
UM0424 Mass storage demo

Doc ID 13465 Rev 12 33/85

6 Mass storage demo

This demo runs on the following STMicroelectronics evaluation boards, and can be easily
tailored to any other hardware:
● STM3210B-EVAL

● STM3210E-EVAL

● STM32L152-EVAL

● STM32373C-EVAL

● STM32303C-EVAL

● STM32L152D-EVAL

To select the STMicroelectronics evaluation board used to run the demo, uncomment the
corresponding line in the platform_config.h file.

6.1 General description
The mass storage demo gives a typical example of how to use the STM32 USB-FS_Device
peripheral to communicate with the PC host using bulk transfer.

This demo supports the BOT (bulk only transfer) protocol and all needed SCSI (small
computer system interface) commands, and is compatible with Windows XP (SP1, SP2,
SPI3), Windows 2000 (SP4), Windows Vista and Windows 7.

6.2 Mass storage demo overview
The mass storage demo complies with USB 2.0 and USB mass storage class (bulk-only
transfer subclass) specifications. After running the application, the user just has to plug the
USB cable into a PC Host and the device is automatically detected without any additional
drive (with Win 2000, XP, Vista and Windows 7). A new removable drive appears in the
system window and write/read/format operations can be performed as with any other
removable drive (see Figure 7).

Figure 7. New removable disk in Windows

Table 11 gives details of the memory support used for each eval board.

Mass storage demo UM0424

34/85 Doc ID 13465 Rev 12

Note: All related firmware used to initialize, read from and write to the media are available in the
stm32xxx_eval_sdio_sd.c.c/.h, stm32xxx_eval_spi_sd.c/.h and fsmc_nand.c/.h files.

Note: For mass storage class, the device firmware does not need to know or take into account the
file system the host is using. The firmware just stores and sends blocks of data as requested
by the host.

6.3 Mass storage protocol

6.3.1 Bulk-only transfer (BOT)

The BOT protocol uses only bulk pipes to transfer commands, status and data (no interrupt
or control pipes). The default pipe (pipe 0, or in other words, Endpoint 0) is only used to
clear the bulk pipe status (clear STALL status) and to issue the two class-specific requests:
Mass Storage reset and Get Max LUN.

Table 11. Eval board memory support

Eval board Memory support IP interface

STM3210E-EVAL MicroSD and NAND Flash SDIO and FSMC

STM3210B-EVAL MicroSD SPI

STM32L152-EVAL MicroSD SPI

STM32L152D-EVAL MicroSD SDIO

STM32373C-EVAL MicroSD SPI

STM32303C-EVAL MicroSD SPI

UM0424 Mass storage demo

Doc ID 13465 Rev 12 35/85

Command transfer

To send a command, the host uses a specific format called command block wrapper (CBW).
The CBW is a 31-byte length packet. Table 12 shows the different fields of a CBW.

● dCBWSignature: 43425355 : USBC (in little Endian)

● dCBWTag: The host specifies this field for each command. The device should return
the same dCBWTag in the associated status.

● dCBWDataTransferLength: total number of bytes to transfer (expected by the host).

● bmCBWFlags: This field is used to specify the direction of the data transfer (if any).
The bits of this field are defined as follows:

– Bit 7: Direction bit:

0: Data Out transfer (host to device).

1: Data In transfer (device to host).

Note: The device ignores this bit if the dCBWDataTransferLength field is
cleared to zero.

– Bits 6:0: reserved (cleared to zero).

● bCBWLUN: concerned Logical Unit number.

● bCBWCBLength: this field specify the length (in bytes) of the command CBWCB.

● CBWCB: the command block to be executed by the device.

Table 12. CBW packet fields

7 6 5 4 3 2 1 0

0-3 dCBWSignature

4-7 dCBWTag

8-11 dCBWDataTransferLength

12 bmCBWFlags

13 Reserved (0) bCBWLUN

14 Reserved (0) bCBWCBLength

15-30 CBWCB

Mass storage demo UM0424

36/85 Doc ID 13465 Rev 12

Status transfer

To inform the host about the status of each received command, the device uses the
command status wrapper (CSW). Table 13 shows the different fields of a CSW.

● dCSWSignature: 53425355 USBS (little Endian).

● dCSWTag: the device sets this field to the received value of dCBWTag in the
concerned CBW.

● dCSWDataResidue: the difference between the expected data (the value of the
dCBWDataTransferLength field of the concerned CBW) and the real value of the data
received or sent by the device.

● bCSWStatus: the status of the concerned command. This field can assume one of the
three non-reserved values shown in Table 14.

Data transfer

The data transfer phase is specified by the dCBWDataTransferLength and bmCBWFlags of
the correspondent CBW. The host attempts to transfer the exact number of bytes to or from
the device.

The diagram shown in Figure 8 shows the state machine of a BOT transfer.

Note: For more information about the BOT protocol, please refer to the “Universal Serial Bus Mass
Storage Class Bulk-Only Transport” specification.

Table 13. CSW packet fields

7 6 5 4 3 2 1 0

0-3 dCSWSignature

4-7 dCSWTag

8-11 dCSWDataResidue

12 bCSWStatus

Table 14. Command block status values

Value Description

0x00 Command passed

0x01 Command failed

0x02 Phase error

0x03=>0xFF Reserved

UM0424 Mass storage demo

Doc ID 13465 Rev 12 37/85

Figure 8. BOT state machine

Mass storage demo UM0424

38/85 Doc ID 13465 Rev 12

6.3.2 Small computer system interface (SCSI)

The SCSI command set is designed to provide efficient peer-to-peer operation of SCSI
devices like, for example, hard desks, tapes and mass storage devices. In other words these
are used to ensure the communication between an SCSI device and an operating system in
a PC host.

Table 15 shows SCSI commands for removable devices. Not all commands are shown. For
more information, please refer to the SPC and RBC specifications.

Table 15. SCSI command set

Command name OpCode
Command
support(1)

1. Command Support key: M = support is mandatory, O = support is optional.

Description Reference

Inquiry 0x12 M Get device information SPC-2

Read Format
Capacities

0x23 M
Report current media capacity and
formattable capacities supported by
medium

SPC-2

Mode Sense (6) 0x1A M Report parameters to the host SPC-2

Mode Sense (10) M Report parameters to the host SPC-2

Prevent\ Allow
Medium Removal

0x1E M
Prevent or allow the removal of media from
a removable media device

SPC-2

Read (10) 0x28 M
Transfer binary data from the medium to
the host

RBC

Read Capacity
(10)

0x25 M Report current medium capacity RBC

Request Sense 0x03 O Transfer status sense data to the host SPC-2

Start Stop Unit 0x1B M
Enable or disable the Logical Unit for
medium access operations and controls
certain power conditions

RBC

Test Unit Ready 0x00 M Request the device to report if it is ready SPC-2

Verify (10) 0x2F M Verify data on the medium RBC

Write (10) 0x2A M
Transfer binary data from the host to the
medium

RBC

UM0424 Mass storage demo

Doc ID 13465 Rev 12 39/85

6.4 Mass storage demo implementations

6.4.1 Hardware configuration interface

The hardware configuration interface is a layer between the USB application (in our case the
Mass Storage demo) and the internal/external hardware of the STM32 microcontroller. This
internal and external hardware is managed by the STM32 standard peripheral library, so
from the firmware point of view, the hardware configuration interface is the firmware layer
between the USB application and the standard peripheral library. Figure 9 shows the
interaction between the different firmware components and the hardware environment.

Figure 9. Hardware and firmware interaction diagram

The hardware configuration layer is represented by the two files HW_config.c and
HW_config.h. For the Mass Storage demo, the hardware management layer manages the
following hardware requirements:

● System and USB-FS_Device peripheral clock configuration

● Read and write LED configuration

● LED command

● Initialize the memory medium

● Get the characteristics of the memory medium (the block size and the memory
capacity)

Mass storage demo UM0424

40/85 Doc ID 13465 Rev 12

6.4.2 Endpoint configurations and data management

This section provides a description of the configuration and the data flow according to the
transfer mode.

Endpoint configurations

The endpoint configurations should be done after each USB reset event, so this part of code
is implemented in the MASS_Reset function (file usp_prop.c).

For all STM32 except Connectivity line devices:

To configure endpoint 0 it is necessary to:

● Configure endpoint 0 as the default control endpoint

● Configure the endpoint 0 Rx and Tx count and buffer addresses in the BTABLE
(usb_conf.h file)

● Configure the endpoint Rx status as VALID and the Tx status as NAK.

The bulk pipes (endpoints 1 and 2) are configured as follows:

1. Configure endpoint 1 as bulk IN

2. Configure the endpoint 1 Tx count and data buffer address in the BTABLE (usb_conf.h
file)

3. Disable the endpoint 1 Rx

4. Configure the endpoint 1 Tx status as NAK

5. Configure the endpoint 2 as bulk OUT

6. Configure the endpoint 2 Rx count and data buffer address in the BTABLE (usb_conf.h
file)

7. Disable the endpoint 2 Tx

8. Configure the endpoint 2 Rx status as VALID.

UM0424 Mass storage demo

Doc ID 13465 Rev 12 41/85

Data management

Data management consists of the transfer of the needed data directly from the specified
data buffer address in the USB memory, according to the related endpoint (IN:
ENDP1TXADDR; OUT: ENDP2RXADDR). For these transfers, the following two functions
are used (usb_sil.c file):

● USB_SIL_Read (): this function transfers the received bytes from the USB memory to
the internal RAM. This function is used to copy the data sent by the host to the device.
The number of received data bytes is determined into the function (not passed as
parameter) and this value is returned by the function at the end of the operation.

● USB_SIL_Write (): this function transfers the specified number of bytes from the
internal RAM to the USB memory. This function is used to send the data from the
device to the host.

6.4.3 Class-specific requests

The Mass Storage Class specification describes two class-specific requests:

Bulk-only mass storage reset

This request is used to reset the Mass Storage device and its associated interface. This
class-specific request makes the device ready for the next CBW sent by the PC host.

To issue the bulk-only mass storage reset, the host issues a device request on the default
pipe (endpoint 0) of:

● bmRequestType: Class, Interface, Host to device

● bRequest field set to 0xFF

● wValue field set to 0

● wIndex field set to the interface number (0 for this implementation)

● wLength field set to 0

This request is implemented as a no-data class-specific request in the
MASS_NoData_Setup() function (usb_prop.c file).

After receiving this request, the device clears the data toggle of the two bulk endpoints,
initializes the CBW signature to the default value and sets the BOT state machine to the
BOT_IDLE state to be ready to receive the next CBW.

GET MAX LUN request

A Mass Storage Device may implement several logical units that share common device
characteristics. The host uses bCBWLUN to designate which logical unit of the device is the
destination of the CBW.

The Get Max LUN device request is used to determine the number of logical units supported
by the device.

Mass storage demo UM0424

42/85 Doc ID 13465 Rev 12

To issue a Get Max LUN request the host must issue a device request on the default pipe
(endpoint 0) of:

● bmRequestType: Class, Interface, Host to device

● bRequest field set to 0xFE

● wValue field set to 0

● wIndex field set to the interface number (0 for this implementation)

● wLength field set to 1

This request is implemented as a data class-specific request in the MASS_Data_Setup()
function (usb_prop.c file). Note that in case of the STM3210E-EVAL board two LUNs are
supported

6.4.4 Standard request requirements

To be compliant with the BOT specification the device must respond to the two following
requirements after receiving the same standard requests:

● When the device switches from the unconfigured to the configured state, the data
toggle of all endpoints must be cleared. This requirement is served by the
Mass_Storage_SetConfiguration() function in the usb_prop.c file.

● When the host sends a CBW command with an invalid signature or length, the device
must keep endpoints 1 and 2 both as STALL until it receives the Mass Storage Reset
class-specific request. This functionality is managed by the
Mass_Storage_ClearFeature() function in the usb_prop.c file.

6.4.5 BOT state machine

To provide the BOT protocol, a specific state machine with five states is implemented. The
states are described below:

● BOT_IDLE: this is the default state after a USB reset, Bulk-Only Mass Storage Reset
or after sending a CSW. In this state the device is ready to receive a new CBW from the
host

● BOT_DATA_OUT: the device enters this state after receiving a CBW with data flow
from the host to the device

● BOT_DATA_IN: the device enters this state after receiving a CBW with data flow from
the device to the host

● BOT_DATA_IN_LAST: the device enters this state when sending the last of the data
asked for by the host

● BOT_CSW_SEND: the device moves to this state when sending the CSW. When the
device is in this state and a correct IN transfer occurs, the device moves to the
BOT_IDLE state to be able to receive the next CBW

● BOT_ERROR: Error state

UM0424 Mass storage demo

Doc ID 13465 Rev 12 43/85

The BOT state machine is managed using the functions described below (usb_bot.c and
usb_bot.h firmware files):

● Mass_Storage_In (); Mass_Storage_Out (): these two functions are called when a
correct transfer (IN or OUT) occurs. The aim of these two functions is to provide the
next step after receiving/sending a CBW, data or CSW

● CBW_Decode (): this function is used to decode the CBW and to dispatch the firmware
to the corresponding SCSI command

● DataInTransfer (): this function is used to transfer the characteristic device data to the
host

● Set_CSW (): this function is used to set the CSW fields with the needed parameters
according to the command execution

● Bot_Abort (): this function is used to STALL the endpoints 1 or 2 (or both) according to
the Error occurring in the BOT flow

6.4.6 SCSI protocol implementation

The aim of the SCSI Protocol is to provide a correct response to all SCSI commands
needed by the operating system on the PC host. This section details the method of
management for all implemented SCSI commands.

● INQUIRY command (OpCode = 0x12):

Send the needed inquiry page data (in this demo only page 0 and the standard page
are supported) with the needed data length according to the ALLOCATION LENGTH
field of the command.

● SCSI READ FORMAT CAPACITIES command (OpCode = 0x23):

Send the Read Format Capacity data response (ReadFormatCapacity_Data[]
from the SCSI_data.c file) after checking the presence of the medium. If no medium
has been detected a MEDIUM_NOT_PRESENT error is returned to force the host to
update its internal parameters.

● SCSI READ CAPACITY (10) command (OpCode = 0x25):

Send the Read Capacity (10) data response (ReadCapacity10_Data[] from the
SCSI_data.c file) after checking the presence of the medium. If no medium has been
detected a MEDIUM_NOT_PRESENT error is returned to force the host to update its
internal parameters.

● SCSI MODE SENSE (6) command (OpCode = 0x1A):

Send the Mode Sense (6) data response (Mode_Sense6_data[] from the
SCSI_data.c file).

● SCSI MODE SENSE (10) command (OpCode = 0x5A):

Send the Mode Sense (10) data response (Mode_Sense10_data[] from the
SCSI_data.c file).

● SCSI REQUEST SENSE command (OpCode = 0x03):

Send the Request Sense data response. Note that the Resquest_Sense_Data []
array (SCSI_data.c file) is updated using the Set_Scsi_Sense_Data() function in
order to set the Sense key and the ASC fields according to any error occurring during
the transfer.

● SCSI TEST UNIT READY command (OpCode = 0x00):

Check the presence of the medium. If no medium has been detected a
MEDIUM_NOT_PRESENT error is returned to force the host to update its internal
parameters.

Mass storage demo UM0424

44/85 Doc ID 13465 Rev 12

● SCSI PREVENT/ALLOW MEDIUM REMOVAL command (OpCode = 0x1E):

Always return a CSW with COMMAND PASSED status.

● SCSI START STOP UNIT command (OpCode = 0x1B):

This command is sent by the PC host when a user right-clicks on the device (in
Windows) and selects the Eject operation. In this case the firmware programs the data
in the internal Flash memory using the Stor_Data_In_Flash() function.

● SCSI READ 10 command (OpCode = 0x28) and SCSI WRITE 10 command (OpCode
= 0x2A):

The host issues these two commands to perform a read or a write operation. In these
cases the device has to verify the address compatibility with the memory range and the
direction bit in the bmFlag of the command. If the command is validated the firmware
launches the read or write operation from the microSD card.

● SCSI VERIFY 10 command (OpCode =0x2F):

The SCSI VERIFY 10 command requests the device to verify the data written on the
medium. In this case no Flash-like memory support is used, so when the SCSI VERIFY
10 command is received, the device tests the BLKVFY bit. If the BLKVFY bit is set to
one, a Command Passed status is returned in the CSW.

6.4.7 Memory management

All the memory management functions are grouped in the two files: memory.c and
memory.h. Memory management consists of two basic processes:

● Management and validation of the address range for the SCSI READ (10) and SCSI
WRITE (10) commands: this process is done by the Address_Management_Test()
function. The role of this function is to extract the real address and memory offset in the
medium memory and test if the current transfer (Read or Write) is in the memory range.
If this is not the case, the function STALLs endpoint 1 or 2 or both endpoints (according
to the transfer Read or Write) and returns a bad status to disable the transfer.

● Management of the Read and Write processes: this process is done by the two
functions Read_Memory() and Write_Memory(). These two functions manage the
medium access based on the two functions “MAL_WriteBlock” and “MAL_ReadBlock”
from the mass_mal.c file. After each access, the current memory offset and the next
Access Address are updated using the length of the previous transfer.

6.4.8 Medium access management

Logical access to the addressed medium takes place in a separate layer called the medium
access layer (mass_mal.c and mass_mal.h) through the logical unit number (LUN). This
layer makes the medium access independent of the upper layer and dispatches write and
read operations to the addressed medium.

UM0424 Mass storage demo

Doc ID 13465 Rev 12 45/85

Figure 10. Medium access layer

Physical access to the NAND and physical access to the micro SD are not similar. In the
case of the micro SD, write, read and erase operations can be made by page units known as
logical sectors. This means that access to the medium is linear and the logical address is
the same as the physical one. In the case of the NAND, write and read operations can be
made by page unit but erase operations are carried out by block unit. This means that a
write operation in a used block is performed in five steps as follows:

1. Allocate a free physical block.

2. Precopy old pages.

3. Write new pages.

4. Erase the old block.

5. Assign the current logical address to the new block.

Figure 11. NAND write operation

The logical-to-physical layer is used to keep a compatibility between the NAND and the
microSD access methods by using the same input parameters for the two media. In the
case of the NAND, the physical address is calculated internally and write and read
operations are carried out in this layer.

Caution: The build look-up table (LUT) process used to translate logical addresses to physical ones
and keep the block status is patented by STMicroelectronics. It is not allowed to use outside
the STM32 firmware, and it should not be reproduced without STMicroelectronics’s
agreement.

Mass storage demo UM0424

46/85 Doc ID 13465 Rev 12

6.5 How to customize the mass storage demo
The implemented firmware is a simple example used to demonstrate the STM32 USB
peripheral capability in bulk transfer. However it can be customized according to user
requirements. This customizing can be done in the three layers of the implemented mass
storage protocol:

● Customizing the BOT layer: the user can implement their own BOT state machine or
modify the implemented one just by modifying the two files usb_BOT.c and usb_BOT.h
and by keeping the same data transfer method.

● Customizing the SCSI layer: the implemented SCSI protocol presents, more than the
supported command listed in Section 6.4.6: SCSI protocol implementation, a list of
unsupported commands. When the host sends one of these commands, a
corresponding function is called by the CBW_Decode() function like a common
command. However, all the functions related to unsupported commands are defined by
the SCSI_Invalid_Cmd() function, (see usb_scsi.c file). The
SCSI_Invalid_Cmd() function STALLs the two endpoints (1 and 2), sets the Sense
data to invalid command key and sends a CSW with a Command Failed status.
To support one of the invalid commands, the user has to comment out the concerned
line and implement their own process. For example, for the need to support the
SCSI_FormatUnit command, comment the line:
// #define SCSI_FormatUnit_Cmd SCSI_Invalid_Cmd

And implement a process in a function with the same name in the usb_scsi.c file:
void SCSI_Invalid_Cmd (void)

{

// your implementation
}

In this way the custom function is called automatically by the CBW_Decode() function
(usb_BOT.c file).

However if you need to implement a command not listed in the previous list you have to
modify the CBW_Decode() and implement the protocol of the new command.

Mass storage descriptors

Table 16. Device descriptor

Field Value Description

bLength 0x12 Size of this descriptor in bytes

bDescriptortype 0x01 Descriptor type (device descriptor)

bcdUSB 0x0200 USB specification release number: 2.0

bDeviceClass 0x00 Device Class

bDeviceSubClass 0x00 Device subclass

bDeviceProtocol 0x00 Device protocol

bMaxPacketSize0 0x40 Max Packet Size of Endpoint 0: 64 bytes

idVendor 0x0483 Vendor identifier (STMicroelectronics)

idProduct 0x5720 Product identifier

bcdDevice 0x0100 Device release number: 1.00

UM0424 Mass storage demo

Doc ID 13465 Rev 12 47/85

iManufacturer 4 Index of the manufacturer String descriptor: 4

iProduct 42 Index of the product String descriptor: 42

iSerialNumber 96 Index of the serial number String descriptor

bNumConfigurations 0x01 Number of possible configurations: 1

Table 17. Configuration descriptor

Field Value Description

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x02 Descriptor type (configuration descriptor)

wTotalLength 32
Total length (in bytes) of the returned data by this
descriptor (including interface endpoint descriptors)

bNumInterfaces 0x0001
Number of interfaces supported by this configuration
(only one interface)

bConfigurationValue 0x01 Configuration value

iConfiguration 0x00 Index of the Configuration String descriptor

bmAttributes 0x80
Configuration characteristics:
Bus powered

Maxpower 0x32
Maximum power consumption through USB bus:
100 mA

Table 18. Interface descriptors

Field Value Description

bLength 0x09 Size of this descriptor in bytes

bDescriptortype 0x04 Descriptor type (Interface descriptor)

bInterfaceNumber 0x00 Interface number

bAlternateSetting 0x00 Alternate Setting number

bNumEndpoints 0x02 Number of used Endpoints: 2

bInterfaceClass 0x08 Interface class: Mass Storage class

bInterfaceSubClass 0x06 Interface subclass: SCSI transparent

bInterfaceProtocl 0x50 Interface protocol: 0x50

iInterface 106 Index of the interface String descriptor

Table 16. Device descriptor (continued)

Field Value Description

Mass storage demo UM0424

48/85 Doc ID 13465 Rev 12

Table 19. Endpoint descriptors

Field Value Description

IN endpoint

bLength 0x07 Size of this descriptor in bytes

bDescriptortype 0x05 Descriptor type (endpoint descriptor)

bEndpointAddress 0x81 IN endpoint address 1.

bmAttributes 0x02 Bulk endpoint

wMaxPacketSize 0x40 64 bytes

bInterval 0x00 Does not apply for bulk endpoints

OUT endpoint

bLength 0x07 Size of this descriptor in bytes

bDescriptortype 0x05 Descriptor type (endpoint descriptor)

bEndpointAddress 0x02 Out endpoint address 2

bmAttributes 0x02 Bulk endpoint

wMaxPacketSize 0x40 64 bytes

bInterval 0x00 Does not apply for bulk endpoints

