WH[®]

CH32M030数据手册

V1.0

概述

CH32M030系列是基于青稞RISC-V3B内核设计的工业级电机微控制器。CH32M030内置4个0PA运放和3个电压比较器CMP,支持组合成2组交流小信号放大解码器QII和2组差分输入电流采样ISP;内置USB PHY和PD PHY,支持USB Host主机和USB Device设备功能、PDUSB、Type-C快充功能、BC1.2及DCP/CDP等多种高压充电协议;内置4对N型功率管栅极预驱,提供高压I/0;内置可编程灌电流模块;提供DMA控制器、12位模数转换ADC、多组定时器、UART串口、I2C、SPI等外设资源,提供过压保护和过温保护。

产品特性

● 内核Core

- 青稞32位RISC-V3B内核
- 支持RV321MCB指令集和自扩展指令
- 三级流水线
- 特有高速的中断响应机制
- 最高72MHz系统主频

● 存储器

- 12KB易失数据存储区SRAM
- 64KB带ECC程序存储区Code Flash
- 512B用户自定义信息存储区

● 电源管理和低功耗

- 内置高压LDO, V_m支持额定5~28V系统供电
- 预驱动I/0供电V∞额定电压: 5~10V
- 普通I/O和ADC供电Vpp33额定电压: 3.3V
- 低功耗模式: 睡眠、停止、待机

● 4个双N型MOSFET半桥驱动器

- 4对高侧/低侧MV引脚. 支持Vps.电压
- 内置低压降自举二极管, 外部只需要电容
- 可组合为三相电机栅极驱动
- 可组合为两路独立的全桥驱动

● 系统时钟

- 内置出厂调校的8MHz的RC振荡器
- 内置约340kHz的RC振荡器
- 支持外部4~25MHz晶体

● 7路通用DMA控制器

- 7个通道。支持环形缓冲区管理
- 支持TIMx/ADC/UART/I2C/SPI

● 12位模数转换ADC

- 模拟输入范围: GND~V_{DD33}
- 20路外部信号通道
- 支持外部延迟触发,支持ADC滑动平均功能
- 0TP过温保护和0VP过压保护及欠压复位
- 多引脚映射的UART串口

● 120接口

- SPI接口
- 2组Type-C和USB PD控制器及PHY
 - 支持DRP、Sink和Source应用
- 4个耐高压的CC引脚

● 全速USB 2.0控制器及PHY

- 支持PDUSB、Host主机和Device设备模式
- 支持BC1.2及多种HV DCP/CDP充电协议
- 内置6位DAC, 可编程电压输出及上下拉

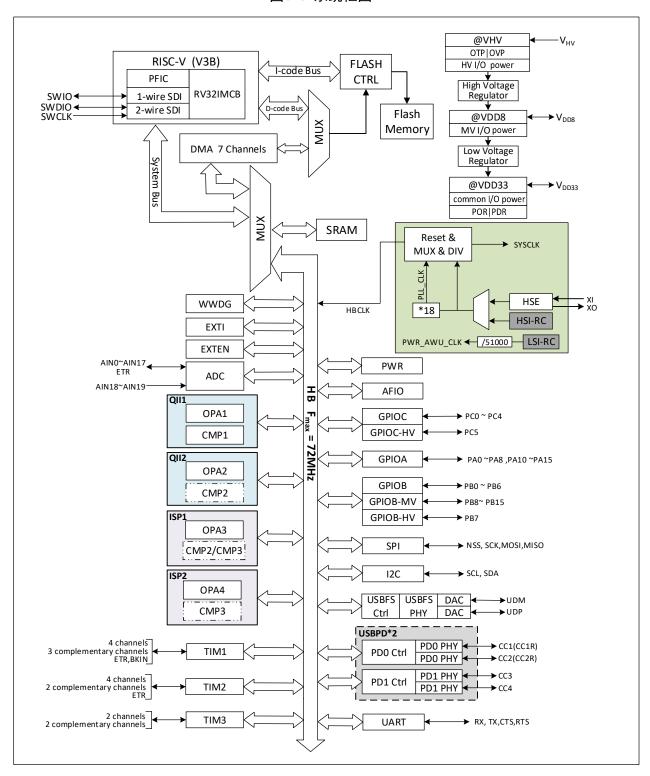
● 多组定时器

- 1个16位高级定时器,提供死区控制和紧急刹车,提供用于电机控制的PWM互补输出
- 1个16位通用定时器
- 1个16位的精简诵用定时器
- 1个窗口看门狗定时器
- 系统时基定时器: 32位计数器

● 4个运放OPA和3个模拟电压比较器CMP

- 可组合为2组交流小信号放大解码器QII1及QII2和2组差分输入电流采样ISP1及ISP2
- 0PA1和0PA2支持自偏置的PGA
- 0PA3和0PA4支持单端及差分输入, PGA多档增 益选择,提供内部自偏置电压
- CMP1支持数字滤波
- CMP2和CMP3支持N端偏置可选,数字滤波
- CMP3有多路输入通道,输出到1/0或者内部
- 2组10位可编程灌电流模块
- 2组源电流模块
- GPIO端口
- 36个1/0口,映射16个外部中断
- 8个MV预驱动引脚, 2个HV高压引脚
- 安全特性: 64位芯片唯一ID
- 调试模式:支持单线和双线两种调试模式
- 封装形式: LQFP、QFN、QSOP

/ 资》	原	型号	C8U3	C8T7	C8U7	K8U7	G8R7
	芯片	引脚数	48	48	48	32	28
	ode Flas	h(字节)	64K	64K	64K	64K	64K
	SRAM (字节)	12K	12K	12K	12K	12K
	半桥栅极驱动器		4	4	4	2	3
	通用]1/0	36	35	36	24	17
剂	顾勁I/0	(MV 1/0)	8	8	8	6	6
	高压1/0	(HV 1/0)	2	-	1	1	-
	高级TI	M1(16位)	1	1	1	1	1
定	通用TI	M2(16位)	1	1	1	1	1
时	精简TI	M3(16位)	1	1	1	1	1
器	窗口看i	门狗(WWDG)	1	1	1	1	1
	系统时	基(32位)			√		
	Al	DC	20	20	20	16	11
	OP	PA1	1	1	1	_	-
	OP	PA2	1	1	1	1	1
	OP	PA3	1	1	1	1	1
	OP	PA4	1	1	1	1	1
	CM	IP1	1	1	1	_	-
	CM	IP2	1	1	1	1	1
	CM	IP3	1	1	1	1	1
	电流采档	∮ISP,ISN	差分*2	差分*2	差分*2	差分*1 单端*1	差分*2
	信号解	₽码QII	2	2	2	1	1
可	编程灌电	流模块ISINK	2	2	2	2	1
	源电流模:	块ISOURCE	2	2	2	1	-
		UART	1	1	1	1	1
		SPI	1	1	1	1	-
通		120	1	1	1	1	1
信		USBFS	Host	Host	Host	Host	Host
接		טטטו ט	Device	Device	Device	Device	Device
	PDUSB	IISB DD	(CC1R, CC2R)	(CC1, CC2)	(CC1R, CC2R)	(CC1R, CC2R)	
		USB PD Type-C	(CC3, CC4)	(CC3, CC4)	(CC3, CC4)	(CC3, CC4)	(CC3, CC4)
		Type 0	内置Rd ^⑴	(000, 004)	内置Rd ^⑴	内置Rd ^⑴	
	封装	形式	QFN48X7	LQFP48	QFN48	QFN32	QSOP28


注:1. 引脚PAO/CC1R和PA1/CC2R内置Type-C规范定义的可控Rd下拉电阻,约5. 1kΩ。

第1章 规格信息

1.1 系统架构

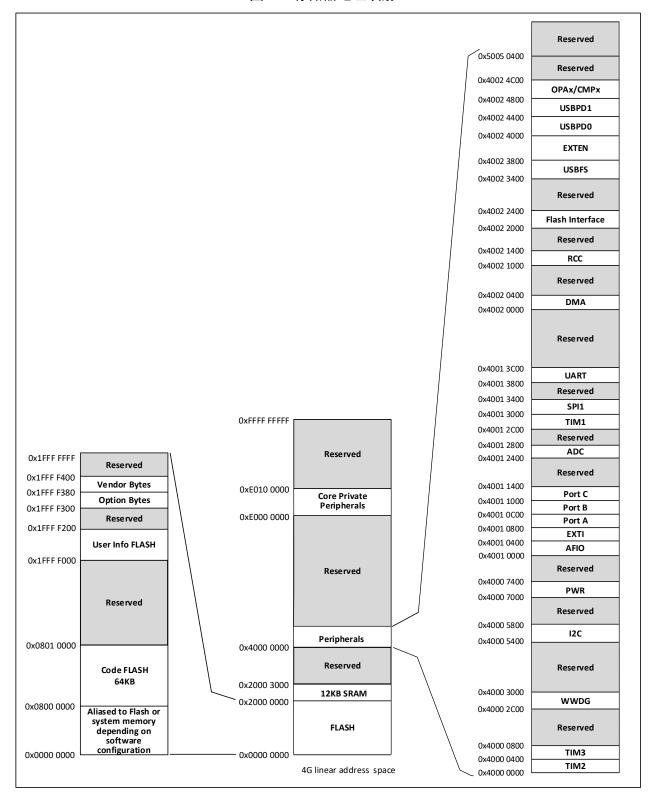
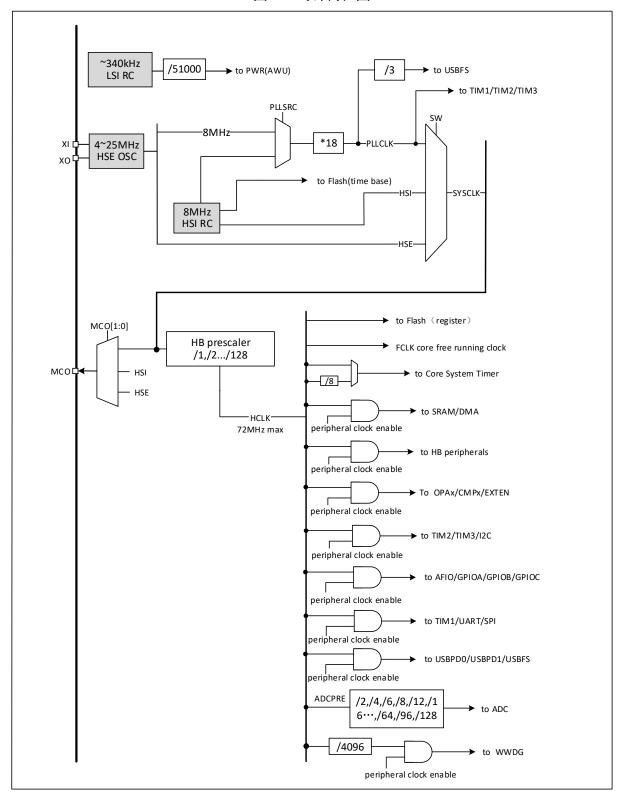

微控制器基于RISC-V指令集的青稞V3B设计,其架构中将内核、仲裁单元、DMA模块、SRAM存储等部分通过多组总线实现交互。设计中集成通用DMA控制器以减轻CPU负担、提高访问效率,同时兼有数据保护机制,时钟自动切换保护等措施增加了系统稳定性。下图是CH32M030内部总体架构框图。

图1-1 系统框图

1.2 存储器映射表


图1-2 存储器地址映射

1.3 时钟树

系统中引入3组时钟源:内部高频RC振荡器(HSI)、内部低频RC振荡器(LSI)和外部高频振荡器(HSE)。其中,低频时钟源为自动唤醒单元提供了时钟基准,高频时钟源直接或者间接通过18倍频后输出为系统总线时钟(SYSCLK),系统时钟再由各预分频器提供了HB域外设控制时钟及采样或接口输出时钟。

图1-3 时钟树框图

1.4 功能概述

1.4.1 青稞RISC-V3B处理器

RISC-V3B是32位嵌入式处理器。处理器内部以模块化管理,支持RISC-V标准指令集IMCB子集。包含快速可编程中断控制器(PFIC)、扩展指令支持等单元。对外多组总线与外部单元模块相连,实现外部功能模块和内核的交互。

青稞处理器以其极简指令集、多种工作模式、模块化定制扩展等特点可以灵活应用不同场景MCU设计,例如小面积低功耗嵌入式场景等。

- 支持机器和用户特权模式
- 快速可编程中断控制器 (PFIC)
- 2级硬件中断堆栈
- 支持串行单/双线调试接口
- 自定义扩展指令

1.4.2 片上存储器

内置12K字节SRAM区,用于存放数据,掉电后数据丢失。

内置64K字节程序闪存存储区(Code FLASH),即用户区,带ECC校验,用于用户的应用程序和常量数据存储。

内置512字节用户自定义信息存储区(User Info FLASH),仅可用WCH-LinkUtility软件工具操作。 内置128字节系统非易失配置信息存储区,用于厂商配置字存储,出厂前固化,用户不可修改。 内置128字节用户选择字存储区。

1.4.3 供电方案

CH32M030内置了3级LD0调压器,分别是从V_{HV}产生V_{DD8}的高压调压器、从V_{DD8}产生V_{DD33}的低压调压器、从V_{DD33}产生内核电源的内核调压器。

 V_{HV} = 4.0~29.0V:为内部高压调压器和HV高压I/0引脚供电,建议 V_{HV} 上累计电容量不小于10uF。 V_{DDS} = 4.0~10.5V:内部高压调压器在 V_{DDS} 引脚产生电压,为MV预驱动I/0引脚供电和内部低压调压器供电。建议 V_{DDS} 外接10uF退耦电容;在不启用电机预驱时,外接电容可以减小。

 $V_{DD33} = 3.1 \sim 3.5 V$: 内部低压调压器在 V_{DD33} 引脚产生额定3.3 V电压,为普通I/O引脚和ADC以及内核调压器供电。建议 V_{DD33} 外接 $1 U F \sim 10 U F$ 容量的电容。

在高压下工作时,CH32M030内部LD0累计功耗较大,为了降低芯片温度,外部可选直接向 V_{DD8} 供电 5. 0~10. 0V,此时要求 $V_{DD8} \leqslant V_{HV}$;外部可选直接向 V_{DD33} 供电 3. 3V,此时要求 $V_{DD33} \leqslant V_{DD8} \leqslant V_{HV}$ 。

1.4.4 保护和复位电路

CH32M030内部集成了上电复位 (POR) /掉电复位 (PDR) 电路,当V_{DD3}电压高于设定的阈值 (V_{POR/PDR}) 后,系统开始工作;当V_{HV}电压下降到使V_{DD3}电压低于设定的阈值 (V_{POR/PDR}) 时,置系统于复位状态,而不必使用外部的欠压复位电路。关于V_{POR/PDR}的值参考表3-4。

CH32M030内置了OTP过温保护,在芯片温度过高时将强行复位MCU。

CH32M030的PB4引脚支持ADC和0VP过压复位,可以将V_{IV}通过片外两个电阻分压后连接到PB4自主配置0VP过压保护,一是可以通过ADC得到实时的V_{IV}值;二是自主设置V_{IV}的过压保护点,当PB4引脚电压超过0VP过压复位阈值电压(V_{OVP_REF})时,置系统于复位状态。例如:上电阻200K和下电阻15K将得到约21.5V的过压复位电压。关于V_{OVP_REF}的值参考表3-4。

1.4.5 系统电压调节器LD0

复位后,调节器自动开启,根据应用方式有两种操作模式:

● 开启模式:正常的运行操作,提供稳定的内核电源。

● 低功耗模式: 当芯片进入待机模式后, 调节器低功耗运行。

1.4.6 快速可编程中断控制器 (PFIC)

青稞内核MCU内置快速可编程中断控制器 (PFIC),最多支持255个中断向量,以最小的中断延迟提供了灵活的中断管理功能。CH32M030管理了5个内核私有中断和31个外设中断管理,其他中断源保留。

- 提供5个不可屏蔽中断
- 支持2级中断嵌套进入和退出硬件自动压栈和恢复,无需指令开销
- 提供4路可编程快速中断通道, 自定义中断向量地址
- 31个外设中断,每个中断请求都有独立的触发和屏蔽位、状态位

1.4.7 低功耗模式

系统支持三种低功耗模式,可以针对低功耗、短启动时间和多种唤醒事件等条件下选择达到最佳的平衡。

● 睡眠模式(SLEEP)

在睡眠模式下,只有CPU时钟停止,但所有外设时钟供电正常,外设处于工作状态。此模式是最浅低功耗模式,但可以达到最快唤醒。

退出条件:任意中断或唤醒事件。

● 停止模式(STOP)

此模式下,高频时钟(HSE/HSI/PLL)域被关闭,SRAM和寄存器内容保持,I/0引脚状态保持。该模式唤醒后系统可以继续运行,此时HSI作为默认系统时钟源。

退出条件:任意外部中断/事件。

● 待机模式 (STANDBY)

置位PDDS、SLEEPDEEP位,执行WFI/WFE指令进入。此模式下,高频时钟(HSE/HSI/PLL)域被关闭,SRAM和寄存器内容保持,I/0引脚状态保持,可以达到最低的电能消耗。该模式唤醒后系统可以继续运行,此时HSI作为默认系统时钟源。待机模式对比停止模式,唯一的差别在于: 待机模式下,系统电压调节器将进入低功耗模式。

退出条件:任意外部中断/事件(EXTI信号)、RST上的外部复位信号,其中EXTI信号包括36个外部 I/0口(PAO~PA8, PA10~PA15, PBO~PB6, PB8~PB15, PCO~PC5)之一,自动唤醒信号,USB的唤醒信号,USB PD唤醒信号等。

1.4.8 外部中断/事件控制器(EXTI)

外部中断/事件控制器总共包含20个边沿检测器,用于产生中断/事件请求。每个中断线都可以独立地配置其触发事件(上升沿或下降沿或双边沿),并能够单独地被屏蔽;挂起寄存器维持所有中断请求状态。EXTI可以检测到脉冲宽度小于内部HB的时钟周期。36个通用I/0口都可选择连接对应的16个外部中断源。

1.4.9 通用DMA控制器

系统内置了1组通用DMA控制器,管理7个通道,灵活处理存储器到存储器、外设到存储器和存储器 到外设间的高速数据传输,支持环形缓冲区方式。每个通道都有专门的硬件DMA请求逻辑,支持一个或 多个外设对存储器的访问请求,可配置访问优先权、传输长度、传输的源地址和目标地址等。

DMA用于主要的外设包括:定时器TIMx、ADC、UART、12C、SPI。

注: DMA和CPU经过仲裁器仲裁之后对系统SRAM进行访问。

1.4.10 时钟和启动

系统时钟源HSI默认开启,在没有配置时钟或者复位后,内部8MHz时钟作为默认的CPU时钟,随后可以另外选择外部4~25MHz时钟或PLL时钟。对于关闭时钟的低功耗模式,唤醒后系统也将使用内部的

RC振荡器。如果使能了时钟中断,软件可以接收到相应的中断。

1.4.11 ADC (模拟/数字转换器)

CH32M030内置1个12位的模拟/数字转换器(ADC),支持多达20个外部通道,可编程的通道采样时间,可以实现单次、连续、扫描或间断转换。提供模拟看门狗功能允许非常精准地监控一路或多路选中的通道,用于监测通道信号电压,监测到电压超过设定的阈值时,可配置产生复位,保护系统。

支持外部事件触发转换,触发源包括片上定时器的内部信号和外部引脚。支持使用DMA操作以及ADC滑动平均功能。

ADC_IN9、ADC_IN10、ADC_IN18以及ADC_IN19可复用为内部通道,连接OPA的输出端,寄存器配置 请参考CH32M030RM手册的17.2章节。

1.4.12 定时器及看门狗

系统中的定时器包括1个高级定时器、1个通用定时器、1个精简定时器、1个看门狗定时器以及系统时基定时器。

● 高级定时器(TIM1)

高级定时器是一个16位的自动装载递加/递减计数器,具有16位可编程的预分频器。除了完整的通用定时器功能外,可以被看成是分配到6个通道的三相PWM发生器,具有带死区插入的互补PWM输出功能,允许在指定数目的计数器周期之后更新定时器进行重复计数周期,刹车功能等。高级定时器的很多功能都与通用定时器相同,内部结构也相同,因此高级定时器可以通过定时器链接功能与其他TIM定时器协同操作,提供同步或事件链接功能。

● 通用定时器(TIM2)

通用定时器是一个16位的自动装载递加/递减计数器,具有一个可编程的16位预分频器以及4个独立的通道,每个独立通道都支持输入捕获、输出比较、PWM生成和单脉冲模式输出。通过复用通道3和4,通道1和2还具有带死区插入的互补PWM输出功能。

● 精简定时器(TIM3)

精简定时器是一个16位的自动装载递加/递减计数器,具有一个可编程的16位预分频器以及2个独立的通道,每个独立通道都支持输入捕获、输出比较、PWM生成和单脉冲模式输出,同时还带有简单的死区控制。

● 窗口看门狗(WWDG)

窗口看门狗是一个7位的递减计数器,并可以设置成自由运行。可以被用于在发生问题时复位整个系统。其由主时钟驱动,具有早期预警中断功能;在调试模式下,计数器可以被冻结。

● 系统时基定时器(SysTick)

青稞微处理器内核自带一个32位递增的计数器,用于产生SYSTICK异常,可专用于实时操作系统, 为系统提供"心跳"节律,也可当成一个标准的32位计数器。具有自动重加载功能及可编程的时钟源。

1.4.13 通用异步收发器(UART)

CH32M030提供了1组通用异步收发器(UART)。支持全双工异步通信以及半双工单线通信,也支持LIN(局部互连网),兼容IrDA SIR ENDEC传输编解码规范和调制解调器(CTS/RTS硬件流控)操作,还允许多处理器通信。其采用分数波特率发生器系统,并支持DMA操作连续通讯。

1.4.14 I2C总线

1个I2C总线接口,能够工作于多主机模式或从机模式,完成所有I2C总线特定的时序、协议、仲裁等,支持标准和快速两种通讯速度。

I20接口提供7位或10位寻址,并且在7位从模式时支持双从地址寻址。内置了硬件CRC发生器/校验器。

1.4.15 串行外设接口(SPI)

芯片提供1个串行外设SPI接口,支持主或从操作,动态切换。支持多主模式,全双工或半双工同步传输,支持基本的SD卡和MMC模式。可编程的时钟极性和相位,数据位宽提供8或16位选择,可靠通信的硬件CRC产生/校验,支持DMA操作连续通讯。

1.4.16 Type-C及USB PD控制器

内置两组USB Power Delivery控制器和PD收发器PHY,提供4个耐高压的CC引脚PAO/PA1/PA2/PA3。PAO和PA1为一对CC引脚,连接到一个PD控制器;PA2和PA3为一对CC引脚,连接到另一个PD控制器。CC1/CC2/CC3/CC4如果有后缀R则表示内置Type-C规范定义的可控Rd下拉电阻,默认开启。

内置多级上拉电流,支持USB Type-C主从检测,自动BMC编解码和CRC,硬件边沿控制,支持USB PD2.0 和PD3.0电力传输控制,支持快充,支持UFP/PD受电端Sink和DFP/PD供电端Source应用、DRP应用以及动态切换,与可编程灌电流模块ISINK配合可支持PPS高精度调压。

1.4.17 通用串行总线USB 2.0全速主机/设备控制器(USBFS)

USB 2.0全速主机控制器和设备控制器(USBFS),遵循USB 2.0 Fullspeed标准,支持PDUSB。提供16个可配置的USB设备端点及一组主机端点。支持控制/批量/同步/中断传输,双缓冲区机制,USB总线挂起/恢复操作,并提供待机/唤醒功能。此外,还内置6位DAC、输出缓冲器和输出比较器。

- 支持USB Host主机功能和USB Device设备功能
- 支持USB 2.0全速12Mbps或者低速1.5Mbps
- 支持USB控制传输、批量传输、中断传输、同步/实时传输
- 支持最大64字节的数据包,内置FIFO,支持中断和DMA
- 支持BC1.2及DCP/CDP等多种高压充电协议
- 内置6位DAC及输出缓冲器,支持输入比较
- 支持可编程电压输出、可编程上拉和下拉电阻

1.4.18 OPA与CMP特性

CH32M030芯片内置4个0PA运放(0PA1、0PA2、0PA3、0PA4)和3个CMP电压比较器(CMP1、CMP2、CMP3),支持有感定位、ADC采样无感定位、比较器无感定位,单电阻或双电阻电流采样方案。

OPA1、OPA2支持自偏置的可编程增益运放(PGA)。其中,OPA1的输出结果在芯片内部连接至电压比较器CMP1和ADC通道IN19;OPA2的输出结果在芯片内部连接至电压比较器CMP2和ADC通道IN18。

OPA3、OPA4支持单端及差分输入,可通过更改配置进行PGA放大倍数选择,还提供内部自偏置电压。其中,OPA3的输出结果在芯片内部连接至电压比较器CMP2或CMP3,以及ADC通道IN9;OPA4的输出结果在芯片内部连接至电压比较器CMP3,以及ADC通道IN10。

CMP1支持可选迟滞特性,支持输出端数字滤波功能,且输出滤波可选。

CMP2支持可选迟滞特性,支持内部N端偏置可选以及输出端数字滤波功能。其P端通道可由GP10输入或者在芯片内部与0PA运放连接;其N端通道可由GP10输入或者在芯片内部与DAC输出连接。

CMP3支持可选迟滞特性,支持内部N端偏置可选,以及输出端数字滤波功能。其P端通道可由GPIO输入或者在芯片内部与OPA运放连接;其N端通道由GPIO输入;其电压比较结果OUT0由GPIO模拟输出,OUT1和OUT2通过GPIO口推挽输出。此外,在芯片内部,CMP3的输出通道连接到TIM2的四个通道,用于捕获触发,还连接到TIM1的BKIN通道,作为TIM1的刹车源,实现过流保护。

这些OPA和CMP可支持组合为2组交流小信号放大解码器(QIII和QII2)和2组差分输入电流采样(ISP1和ISP2)。

1.4.18.1 交流小信号放大解码器(QII)

芯片支持2组交流小信号放大解码器QII1和QII2。其中,QII1由1个前级的可调增益放大器OPA1、1个后级的电压比较器CMP1、数字滤波器组成;而QII2由1个前级的可调增益放大器OPA2、1个后级复用的电压比较器CMP2、数字滤波器组成。

输入的交流小信号通过0PA进行放大,并使用电压比较器整形为数字信号,经数字滤波器进行滤波 后解码,可实现传输过程中的高质量与低误码率。也可以将放大后的信号送入ADC进行解码。

- QII1和QII2输出通道直连到ADC内部通道或比较器CMP输入端
- QII1和QII2支持PGA自偏置以及PGA多种增益可选,支持数字滤波
- Q112中的比较器CMP2的N端支持可选的内部自偏置电压

1.4.18.2 差分输入电流采样(ISP)

CH32M030支持2组差分输入的电流采样ISP1和ISP2,支持双电阻电流采样和过流保护。其中,ISP1由1个前级的可调增益放大器0PA3、1个后级复用的电压比较器CMP2或CMP3组成;ISP2由1个前级的可调增益放大器0PA4、1个后级复用的电压比较器CMP3组成。

ISP1和ISP2支持差分或单端应用。当差分应用时, ISP1和ISN1/PA8引脚为一对差分输入, ISP2/PA10和ISN2/PA11引脚为另一对差分输入; 而当单端应用时, 无需负端输入ISN, 此时ISN1/PA8和ISN2/PA11引脚可用于任何用途, 例如ADC或者GP10。

ISP通过外部电阻采集电流得到弱电压信号,经闭环放大器OPA放大后,结果送入ADC或比较器。

- ISP1和ISP2支持差分或单端输入,增益及输出直流电平可配置
- ISP1和ISP2输出通道直连到ADC内部通道或比较器CMP输入端

1.4.19 可编程灌电流模块ISINK/源电流模块ISOURCE

系统提供了2组可编程灌电流模块ISINK和2组源电流模块ISOURCE。

可编程灌电流模块ISINK支持10位电流精度,可用于以20mV为步距对外部DC-DC进行高精度电压调节,实现PPS协议。

源电流模块可用于外接低成本的NTC感温电阻等,通过ADC计算温度。

1.4.20 栅极驱动器

CH32M030集成了4个独立半桥驱动器,每个半桥均包含低压降的自举二极管、高侧和低侧电平移位电路、高侧和低侧输出驱动电路,支持4对N型MOSFET功率管的栅极驱动,外部仅需一个电容保存自举电源,栅极驱动电压取决于V₀₀₈,从5V到10V共4档可调。

4个独立半桥可组成三相半桥,用于三相电机的栅极驱动,由TIM1产生的PB8~PB13信号控制;4 个独立半桥也可组成2组全桥,用于两路独立的全桥驱动,分别由TIM1产生的PB8~PB11信号和TIM2产 生的PB12~PB15信号控制。定时器产生PWM信号,支持死区时间控制,支持过流保护刹车控制。

下图1-4为单个半桥驱动器的结构框图。

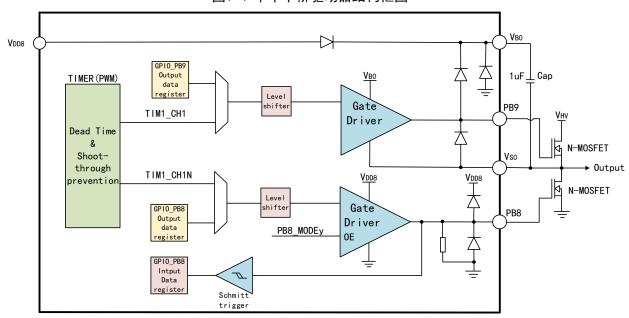


图1-4 单个半桥驱动器结构框图

注: Cap为片外电容; N-MOSFET为片外N型MOSFET功率管。

1.4.21 通用输入输出接口(GPIO)

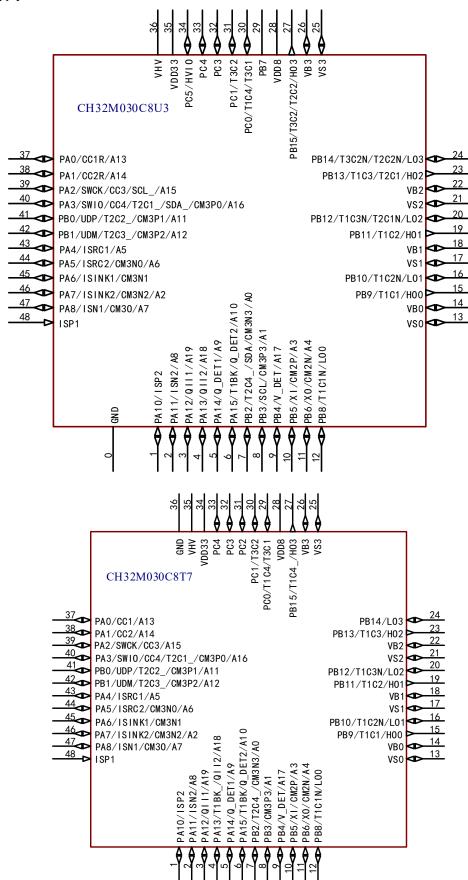
系统提供了3组GPIO端口,共37个GPIO引脚(PAO~PA8, PA10~PA15, PBO~PB15, PCO~PC5)。所有的GPIO引脚可以由软件配置成输出(推挽或开漏),除PB7、PB9、PB11、PB13、PB15以外的GPIO引脚可以由配置成输入或复用的外设功能端口。多数GPIO引脚都与数字或模拟的复用外设共用,提供锁定机制冻结10配置,以避免意外的写入I/0寄存器。

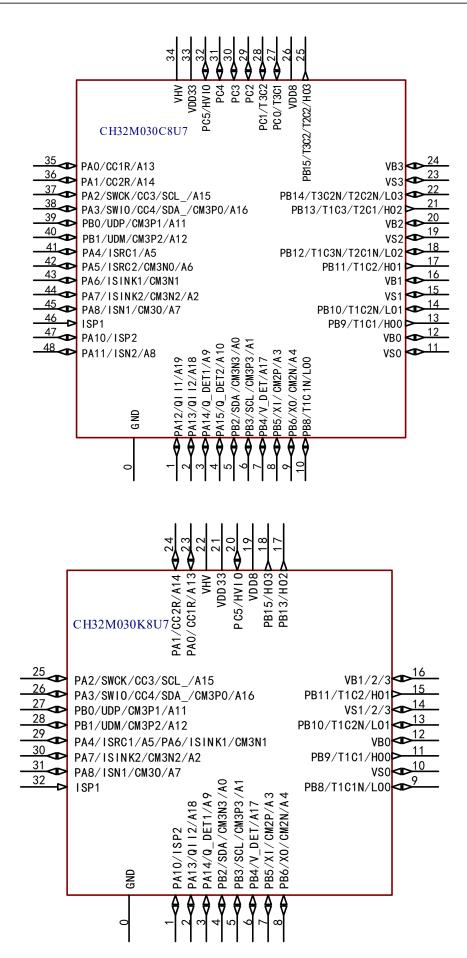
PB8~PB15为V∞,供电的预驱动MV I/0引脚,PB7为高压开漏输出引脚,PC5为V√供电的高压HV I/0引脚,其余为V∞,供电的普通I/0引脚。

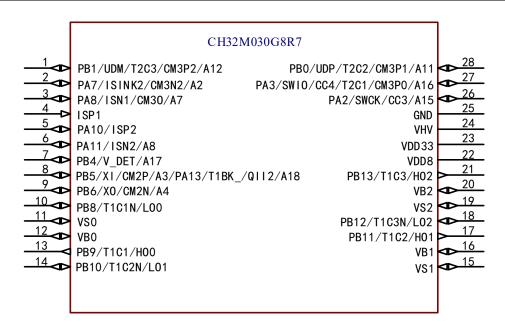
PB9、PB11、PB13、PB15为推挽输出,默认输出低电平,不支持输入。

PB7仅支持高压开漏输出,不支持输入; PC5支持轻载下的推挽输出,在压差7V以下可防电流倒灌。除PB7~PB15以及PC5外,所有GP10引脚都支持可控上拉,其中,CC1/CC2/CC3/CC4提供的是多级上拉电流。

PBO和PB1内置默认开启、可以调节、可以关闭的下拉电阻,由EXTEN_CTLR1中的两组PDE和DAC进行调节和控制,并可提供下拉电流;CC1/CC2/CC3/CC4如果有后缀R则表示内置Type-C规范定义的可控Rd下拉电阻,默认开启;PAO/CC1R和PA1/CC2R引脚内置可控Rd下拉电阻,作为GPIO推挽输出时建议关闭下拉;PB8、PB10、PB12、PB14内置不可关闭的下拉电阻;除此之外的GPIO引脚均未内置下拉电阻。


MV I/0引脚(PB8~PB15)由V₀₀₈提供电源,通过改变V₀₀₈供电将改变MV引脚输出电平高值来适配外部接口电平。其中,PB9、PB11、PB13、PB15供电为基于V₀₀₈供电的自举电源,输出高电平时为V₈,输出低电平时为V₈。HV I/0引脚PC5由V_{HV}提供电源,通过改变V_{HV}供电将改变HV I/0引脚输出电平高值来适配外部接口电平。普通I/0引脚由V₀₀₃₃提供电源,通过改变V₀₀₃₃供电将改变普通I/0引脚输出电平高值来适配外部接口电平。具体引脚请参考第二章引脚描述。


1.4.22 调试接口(SDI Serial Debug Interface)


内核自带一个串行单线调试接口(1-wire SDI Serial Debug Interface)和一个串行2线调试接口(2-wire SDI Serial Debug Interface)。系统支持单双线两种调试模式;其中,单线调试为默认调试模式,对应SWIO引脚,而双线调试对应SWDIO和SWCLK引脚,可以提高下载速度。系统上电或复位后默认调试接口引脚功能开启,主程序运行后可以根据需要关闭调试引脚复用功能。

第2章 引脚信息

2.1 引脚排列

注: 引脚图中复用功能均为缩写。

示例: A:ADC_(A13:ADC_IN13)

T:TIM_(T2C4:TIM2_CH4, T1C1N:TIM1_CH1N, T1BK:TIM1_BKIN)

CM3:CMP3_(CM3P2:CMP3_P2, CM3N2:CMP3_N2)
CM2:CMP2_(CM2P:CMP2_P, CM2N:CMP2_N)

SWCK:SWCLK SWIO:SWDIO ISRC:ISOURCE

2.2 引脚定义

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号芯片。不同型号之间外设资源有差异,查看前请先根据芯片型号资源表确认是否有此功能。

表2-1 引脚定义

			•							
QS0P28	QFN32	QFN48	QFN48X7	LQFP48	引脚 名称	引脚 类型 ^⑴	1/0 特性 ⑴③	主功能 (复位 后)	默认复用功能	重映射功能 ^⑵
_	0	0	0	-	GND	Р	-	GND		
5	1	47	1	1	PA10	1/0/A	-	PA10	ISP2	
6	-	48	2	2	PA11	1/0/A	-	PA11	ADC_IN8/ISN2	SPI_MOSI_2
_	-	1	3	3	PA12	1/0/A	-	PA12	ADC_IN19/QII1	
8	2	2	4	4	PA13 ⁽⁷⁾	1/0/A	-	PA13	ADC_IN18/QII2	TIM1_BKIN_1
_	3	3	5	5	PA14	I/0/A	-	PA14	ADC_IN9/ADC_ETR/ UART_CTS/Q_DET1	UART_CTS_1/I2C_SDA_2
_	-	4	6	6	PA15	1/0/A	-	PA15	ADC_IN10/TIM1_BKIN /UART_RTS/RST (4) /Q_DET2	TIM1_BKIN_2/TIM1_BKIN_3/ TIM1_BKIN_4/UART_RTS_1/ I2C_SCL_2
-	4	5	7	7	PB2	1/0/A	-	PB2	ADC_INO/TIM3_CH1N/ I2C_SDA/CMP3_N3	TIM2_CH4_1/TIM2_CH4_3/ TIM2_CH2N_1/TIM2_CH2N_3/ TIM3_CH1_ETR_2/ TIM3_CH2_1/UART_CTS_3/ UART_CTS_4/UART_CTS_5
_	5	6	8	8	PB3	I/0/A	-	PB3	ADC_IN1/TIM3_CH2N/ I2C_SCL/CMP3_P3	TIM3_CH2_2/TIM3_CH2N_1/ UART_RTS_3/UART_RTS_4/ UART_RTS_5
7	6	7	9	9	PB4	1/0/A	-	PB4	ADC_IN17/CMP3_OUT1 /V_DET	TIM3_CH1N_2
8	7	8	10	10	PB5 (7)	1/0/A	-	PB5	ADC_IN3/XI/ CMP3_OUT2/CMP2_PO	TIM3_CH2N_2/TIM3_CH2_3/ TIM2_CH1_ETR_3/ UART_RX_2/SPI_MOSI_1
9	8	9	11	11	PB6	I/0/A	-	PB6	ADC_IN4/X0/CMP2_N0	ADC_ETR_1/TIM2_CH2_3/ TIM3_CH2N_3/UART_TX_2/ I2C_SDA_1/SPI_SCK_1
10	9	10	12	12	PB8	1/0	MV/PD	PB8	LOO/TIM1_CH1N	TIM1_CH1N_1/TIM1_CH1N_2/ TIM1_CH1N_4
11	10	11	13	13	V _{so}	Р	_	V _{so}		
12	12	12	14	14	V _{BO}	Р	-	V_{BO}		
13	11	13	15	15	PB9	0	MVO	PB9	H00/TIM1_CH1	TIM1_CH1_1/TIM1_CH1_2/ TIM1_CH1_4
14	13	14	16	16	PB10	1/0	MV/PD	PB10	LO1/TIM1_CH2N	TIM1_CH2N_1/TIM1_CH2N_2/ TIM1_CH2N_4
15	14	15	17	17	V _{S1} ⁽⁸⁾	Р	-	V _{S1}		
16	16	16	18	18	V _{B1} ⁽⁹⁾	Р	-	V_{B1}		

17	15	17	19	19	PB11	0	MVO	PB11	H01/TIM1_CH2	TIM1_CH2_1/TIM1_CH2_2/ TIM1_CH2_4
18	-	18	20	20	PB12	1/0	MV/PD	PB12	L02/TIM1_CH3N	TIM1_CH3N_1/TIM1_CH3N_4/ TIM2_CH3_2/TIM2_CH1N_2/ TIM3_CH1N_4
19	14	19	21	21	V _{S2} ⁽⁸⁾	Р	_	V_{s2}		
20	16	20	22	22	V _{B2} (9)	Р	-	V_{B2}		
21	17	21	23	23	PB13	0	MVO	PB13	H02/TIM1_CH3	TIM1_CH3_1/TIM1_CH3_4/ TIM2_CH1_ETR_2/ TIM3_CH1_ETR_4
_	_	22	24	24	PB14	1/0	MV/PD	PB14	L03	TIM1_CH3N_2/TIM2_CH4_2/ TIM2_CH2N_2/TIM3_CH2N_4
-	14	23	25	25	V _{S3} (8)	Р	_	V _{s3}		
_	16	24	26	26	V _{B3} ⁽⁹⁾	Р	_	V _{B3}		
-	18	25	27	27	PB15	0	MVO	PB15	H03	TIM1_CH3_2/TIM1_CH4_1/ TIM2_CH2_2 (10) /TIM3_CH2_4
22	19	26	28	28	V _{DD8}	Р	-	V_{DD8}		
_	_	_	29	_	PB7	0	HVOD	PB7		
-	_	27	30	29	PC0	1/0	-	PC0	TIM1_CH4/RST (4) TIM3_CH1_ETR/ UART_RX	TIM1_CH3N_3/TIM1_CH3N_4/ TIM3_CH1_ETR_1
-	ı	28	31	30	PC1	1/0	-	PC1	TIM1_ETR/TIM3_CH2/ UART_TX	TIM1_ETR_1/TIM1_CH2N_3/ TIM1_CH2N_4/TIM3_CH1N_1/ UART_TX_1
-	_	29	_	31	PC2	1/0	-	PC2		TIM1_CH4_2/TIM1_CH1N_3/ TIM1_CH1N_4/UART_RX_1
-	_	30	32	32	PC3	1/0	-	PC3	SPI_MOSI	TIM1_CH1_3/TIM1_CH1_4
-	_	31	33	33	PC4	1/0	-	PC4	SPI_MISO	TIM1_CH2_3/TIM1_CH2_4/ SPI_MISO_2
_	20	32	34	_	PC5	1/0	HV	PC5		TIM1_CH4_3/ TIM2_CH2_2 (10)
23	21	33	35	34	V_{DD33}	Р	_	V_{DD33}		
24	22	34	36	35	$V_{\scriptscriptstyle HV}$	Р	_	V_{HV}		
25	-	_	_	36	GND	Р	_	GND		
-	23	35	37	37	PA0 (5)	1/0/A	-	PA0	ADC_IN13/CC1 (CC1R) /SPI_NSS	TIM1_CH3_3/TIM1_CH3_4/ SPI_NSS_2
_	24	36	38	38	PA1 (5)	1/0/A	-	PA1	ADC_IN14/CC2 (CC2R) /SPI_SCK	TIM1_CH4_4/SPI_SCK_2/ SPI_SCK_3
26	25	37	39	39	PA2 (5)	I/0/A	-	PA2	ADC_IN15/SWCLK/CC3	TIM3_CH1_ETR_3/ UART_RX_4/UART_TX_5/ UART_CTS_2/I2C_SCL_1/ I2C_SCL_3/SPI_NSS_1/ SPI_NSS_3

27	26	38	40	40	PA3 (5)	1/0/A	-	PA3	ADC_IN16/SWDIO/ SWIM/CC4/CMP3_P0	TIM2_CH1_ETR_1/ UART_RX_5/UART_TX_4/ I2C_SDA_3
28	27	39	41	41	PB0	1/0/A	-	PB0	ADC_IN11/UDP/ CMP3_P1	TIM2_CH2_1/UART_RX_3
1	28	40	42	42	PB1	1/0/A	-	PB1	ADC_IN12/UDM/ CMP3_P2	TIM2_CH3_1/TIM2_CH3_3/ TIM2_CH1N_1/TIM2_CH1N_3/ UART_TX_3
-	29	41	43	43	PA4 (6)	I/0/A	-	PA4	ADC_IN5/TIM2_CH4/ TIM2_CH2N/ISOURCE1	TIM1_ETR_2/TIM1_ETR_3/ TIM1_ETR_4/TIM3_CH1N_3/ UART_RTS_2/SPI_MISO_1/ SPI_MISO_3
-	-	42	44	44	PA5	1/0/A	-	PA5	ADC_IN6/ TIM2_CH1_ETR/ CMP3_NO/ISOURCE2	
_	29	43	45	45	PA6 (6)	1/0/A	_	PA6	TIM2_CH2/CMP3_N1/ ISINK1	
2	30	44	46	46	PA7	1/0/A	-	PA7	ADC_IN2/TIM2_CH3/ TIM2_CH1N/CMP3_N2/ ISINK2	
3	31	45	47	47	PA8	1/0/A	ı	PA8	ADC_IN7/MCO/ CMP3_OUTO/ISN1	SPI_MOSI_3
4	32	46	48	48	ISP1	Α	-	ISP1		

注1:表格缩写解释:

I = TTL/CMOS电平斯密特输入,支持VDBS电压范围的输入;

0 = CMOS电平三态输出,支持V_{DD33}电压范围的输出;

P = 电源:

MV = 预驱动电压引脚,支持 V_{008} 电压范围的输入和输出;

MVO = 预驱动电压引脚, 支持V∞电压范围的输出;

HV = 高压引脚, 支持Vm电压范围的输入和输出;

HVOD = 高压引脚,支持V₩电压范围的开漏输出;

PD = 内置不可关闭的下拉电阻, 可用于驱动N-MOSFET的栅极;

A = 模拟信号输入或输出,支持Viiisi电压范围。

- 注2: 重映射功能下划线后的数值表示AFIO寄存器中相对应位的配置值。例如: SPI_MOSI_2表示AFIO 寄存器相应位配置为10b。
- 注3:除PB7~PB15和PC5外,所有GPI0引脚都支持可控上拉。PB0和PB1内置默认开启、可以调节、可以 关闭的下拉电阻,并可提供下拉电流;CC1/CC2/CC3/CC4如果有后缀R则表示内置Type-C规范定义 的可控Rd下拉电阻,默认开启;PA0/CC1R和PA1/CC2R引脚内置可控Rd下拉电阻;PB8、PB10、PB12、 PB14内置不可关闭的下拉电阻;除此之外的GPI0引脚均未内置下拉电阻。
- 注4: 对于复位引脚,其位置选择由用户字配置位RST_PIN_SEL控制。当位RST_PIN_SEL = 1时,PA15 为复位引脚;当位RST PIN SEL = 0时,PCO为复位引脚。
- 注5: 当V_H < 5V且PAO~PA3作为ADC输入通道或GPIO推挽输出时,其电压范围约为OV~(V₀₀₃₃-1.7V)。
- 注6:对于CH32M030K8U7芯片,PA4和PA6引脚在芯片内部短接合封,禁止将两个10均配置为输出功能。
- 注7: 对于CH32M030G8R7芯片, PB5和PA13引脚在芯片内部短接合封, 禁止将两个10均配置为输出功能。
- 注8:对于CH32M030K8U7芯片,Vs1、Vs2和Vs3引脚在芯片内部短接合封。

注9:对于CH32M030K8U7芯片, VB1、VB2和VB3引脚在芯片内部短接合封。

注10: 当寄存器AFIO_PCFR1的bit[11:10]TIM2_RM = 10且TIM2_CTLR1的bit[12]CH2_PWMOUT_EN = 1时, TIM2_CH2的PWM输出改为PC5引脚输出。

表2-2 CH32M030专有引脚以及功能说明

名称	描述说明
L00, L01, L02, L03	内部低侧栅极驱动器的输出,支持输入,控制N型MOSFET的栅极。
H00, H01, H02, H03	内部高侧栅极驱动器的输出,控制N型MOSFET的栅极。
$V_{s0}, V_{s1}, V_{s2}, V_{s3}$	内部高侧栅极驱动器的悬浮地。
V V V V	内部高侧栅极驱动器的自举电源,建议外接1uF~10uF容量电容到各自
V_{B0} , V_{B1} , V_{B2} , V_{B3}	的悬浮地。

2.3 引脚复用功能

注意,下表中的引脚功能描述针对的是所有功能,不涉及具体型号芯片。不同型号之间外设资源有差 异,查看前请先根据芯片型号资源表确认是否有此功能。

表2-3 引脚复用和重映射功能

复用 引脚	ADC	TIM1	T1M2/3	UART	SYS	USB	12C	SPI	ANA
PA0	ADC_IN13	TIM1_CH3_3 TIM1_CH3_4				CC1 (CC1R)		SPI_NSS SPI_NSS_2	
PA1	ADC_IN14	TIM1_CH4_4				CC2 (CC2R)		SPI_SCK SPI_SCK_2 SPI_SCK_3	
PA2	ADC_IN15		TIM3_CH1_ETR_3	UART_RX_4 UART_TX_5 UART_CTS_2	SWCLK	CC3	12C_SCL_1 12C_SCL_3	SPI_NSS_1 SPI_NSS_3	
PA3	ADC_IN16		TIM2_CH1_ETR_1	UART_RX_5 UART_TX_4	SWD10 SWIM	CC4	12C_SDA_3		CMP3_P0
PA4	ADC_IN5	TIM1_ETR_2 TIM1_ETR_3 TIM1_ETR_4	T I M2_CH4 T I M2_CH2N T I M3_CH1N_3	UART_RTS_2				SPI_MISO_1 SPI_MISO_3	I SOURCE1
PA5	ADC_IN6		TIM2_CH1_ETR						CMP3_N0 ISOURCE2
PA6			TIM2_CH2						CMP3_N1 ISINK1
PA7	ADC_IN2		TIM2_CH3 TIM2_CH1N						CMP3_N2 ISINK2
PA8	ADC_IN7				MCO			SPI_MOSI_3	CMP3_OUTO
PA10									ISP2
PA11	ADC_IN8							SPI_MOSI_2	ISN2
PA12	ADC_IN19								QII1
PA13	ADC_IN18	TIM1_BKIN_1							Q112
PA14	ADC_IN9 ADC_ETR			UART_CTS UART_CTS_1			12C_SDA_2		Q_DET1
PA15	ADC_IN10	TIM1_BKIN TIM1_BKIN_2 TIM1_BKIN_3 TIM1_BKIN_4		UART_RTS UART_RTS_1	RST		12C_SCL_2		Q_DET2
PB0	ADC_IN11		TIM2_CH2_1	UART_RX_3		UDP			CMP3_P1
PB1	ADC_IN12		TIM2_CH3_1 TIM2_CH3_3 TIM2_CH1N_1 TIM2_CH1N_3	UART_TX_3		UDM			 CMP3_P2
PB2	ADC_INO		TIM2_CH4_1 TIM2_CH4_3 TIM2_CH2N_1 TIM2_CH2N_3 TIM3_CH1_ETR_2 TIM3_CH2_1 TIM3_CH1N	UART_CTS_3 UART_CTS_4 UART_CTS_5			12C_SDA		CMP3_N3
PB3	ADC_IN1		TIM3_CH2_2 TIM3_CH2N TIM3_CH2N_1	UART_RTS_3 UART_RTS_4 UART_RTS_5			12C_SCL		CMP3_P3
PB4	ADC_IN17		TIM3_CH1N_2						CMP3_OUT1 V_DET
PB5	ADC_IN3		TIM3_CH2N_2 TIM3_CH2_3 TIM2_CH1_ETR_3	UART_RX_2	ΧI			SPI_MOSI_1	CMP3_OUT2 CMP2_P0
PB6	ADC_IN4 ADC_ETR_1		TIM2_CH2_3 TIM3_CH2N_3	UART_TX_2	XO		12C_SDA_1	SPI_SCK_1	CMP2_NO
PB8		TIM1_CH1N TIM1_CH1N_1 TIM1_CH1N_2 TIM1_CH1N_4							

复用引脚	ADC	TIM1	T1M2/3	UART	SYS	USB	120	SPI	ANA
J		TIM1_CH1							
PD0		TIM1_CH1_1							
PB9		T I M1_CH1_2							
		TIM1_CH1_4							
		TIM1_CH2N							
PB10		TIM1_CH2N_1							
PBIU		TIM1_CH2N_2							
		TIM1_CH2N_4							
		TIM1_CH2							
PB11		T I M1_CH2_1							
1011		T I M1_CH2_2							
		TIM1_CH2_4							
		TIM1_CH3N	T1M2_CH3_2						
PB12		TIM1_CH3N_1	TIM2_CH1N_2						
		TIM1_CH3N_4	TIM3_CH1N_4						
		TIM1_CH3	TIM2_CH1_ETR_2						
PB13		TIM1_CH3_1	TIM3_CH1_ETR_4						
		T I M1_CH3_4							
			T1M2_CH4_2						
PB14		TIM1_CH3N_2	TIM2_CH2N_2						
			TIM3_CH2N_4						
PB15		T I M1_CH3_2	TIM2_CH2_2						
		T I M1_CH4_1	TIM3_CH2_4						
		TIM1_CH4	TIM3_CH1_ETR						
PC0		TIM1_CH3N_3	TIM3_CH1_ETR_1	UART_RX	RST				
		TIM1_CH3N_4							
		TIM1_ETR	T.110 0110						
PC1		TIM1_ETR_1	TIM3_CH2	UART_TX					
		TIM1_CH2N_3	TIM3_CH1N_1	UART_TX_1					
		TIM1_CH2N_4							
DOO		T I M1_CH4_2		HADT DV 4					
PC2		TIM1_CH1N_3		UART_RX_1					
		TIM1_CH1N_4							
PC3		TIM1_CH1_3						SPI_MOSI	
		TIM1_CH1_4						CDI MICO	
PC4		TIM1_CH2_3						SPI_MISO SPI_MISO_2	
DOE		TIM1_CH2_4	TIMO OUO O					371_W13U_Z	
PC5		TIM1_CH4_3	T1M2_CH2_2						

第3章 电气特性

3.1 测试条件

除非特殊说明和标注,所有电压都以GND为基准。

所有最小值和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。典型数值可基 于以下三种环境之一用于设计指导:

- 1、单Ⅴ₩供电, 常温25℃、Ⅴ₩ = 12Ⅴ;
- 2、外部直接为V_{DD8}供电, 常温25°C、V_{HV} = 12V、V_{DD8} = 8V, 此时要求V_{DD8} ≤ V_{HV};
- 3、外部直接为V_{DD33}和V_{DD8}供电,常温25℃、V_{HV} = 12V、V_{DD8} = 8V、V_{DD33} = 3.3V,此时要求V_{DD33} ≤ V_{DD8} \leq $V_{\text{HV}\,\circ}$

对于通过综合评估、设计模拟或工艺特性得到的数据,不会在生产线进行测试。在综合评估的基 础上,最小和最大值是通过样本测试后统计得到。除非特殊说明为实测值,否则特性参数以综合评估 或设计保证。

图3-1-1 常规供电典型电路(单V₩供电)

供电方案:

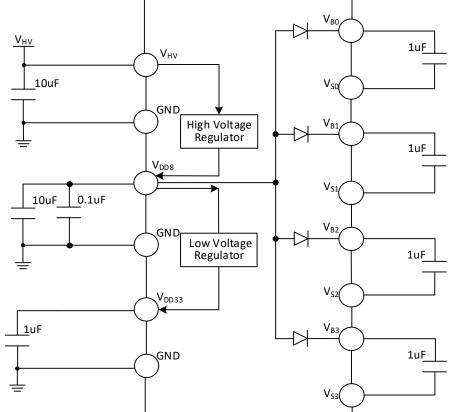


图3-1-2 常规供电典型电路(外部直接为Ⅷ供电)

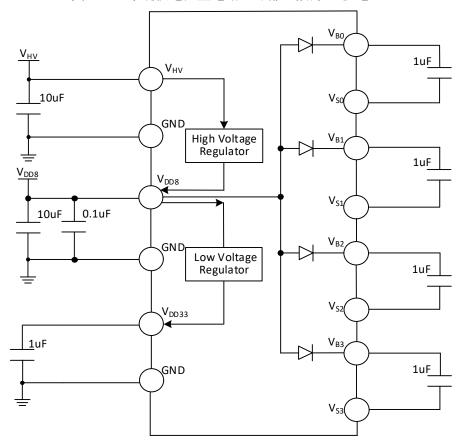
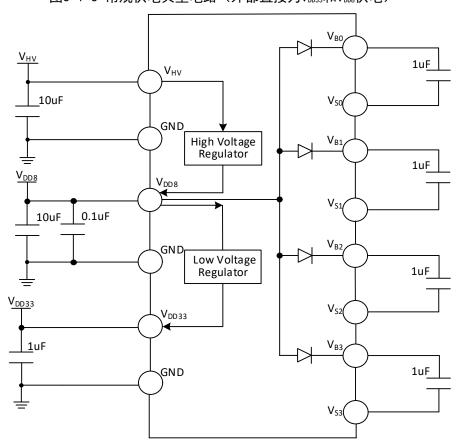



图3-1-3 常规供电典型电路(外部直接为V₀₀₃₃和V₀₀₈供电)

3.2 绝对最大值

临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏。

表3-1 绝对最大值参数表

符号		描述	最小值	最大值	单位
TA	工作时的环境温度	CH32M030C8T7、CH32M030C8U7 CH32M030G8R7、CH32M030K8U7	-40	105	°C
		CH32M030C8U3	-40	125	°C
Ts	存储时的环境温度		-40	150	°C
V _{HV} -GND	外部主供电电压(V๗)		-0. 3	30	V
V _{DD8} -GND	内部低压调压器和MV I/0引	脚的供电电压(V _{DB})	-0. 3	12	٧
V _{DD33} -GND	普通1/0引脚和模拟部分的	电源电压(V _{DD33})	-0. 3	3. 8	٧
	HV高压I/0引脚PC5上的输入	、 电压	-0. 3	V _{HV} +7	٧
VIN	HV高压I/0引脚PB7上的电压	<u>E</u>	-0. 3	40	٧
V IN	耐高压I/0引脚CCx上的输入	(电压(可能有漏电)	-0. 3	28	٧
	普通1/0引脚上的输入电压		-0. 3	V _{DD33} +0. 3	٧
V_{B}	高侧自举电源电压		-0. 3	40	٧
V _{BPEAK}	高侧自举1%占空比脉冲电压	E	-0. 3	42	٧
Vs	高侧悬浮地电压		-2	30	٧
V _{SPEAK}	高侧悬浮地1%占空比脉冲电	- 	-5	32	٧
V _{B_S}	高侧自举电源相对悬浮地的	为压差	-0. 3	12	٧
V _{HO}	高侧驱动器的输出电压		V₅-0. 3	V _B +0. 3	٧
V _{L0}	低侧驱动器的输出电压		-0. 3	V _{DD8} +0. 3	٧
V _{ESD} (HBM)	对外引脚USB和PD的ESD静电	B放电电压(HBM)	4	K	٧
V ESD (HBM)	其它引脚的ESD静电放电电	压(HBM)	2	K	٧
I PEAKVB	№内置二极管1%占空比脉冲	·输出电流		70	mA
I AVVB	V₅内置二极管连续输出电流	Ε		7	mA
I _{vhv}	所有Vℼ引脚连续输入电流	(供应电流)		60	mA
I _{GND}	所有GND公共地引脚的合计	总电流(流出电流)		200	mA
	HV高压I/0引脚上的灌电流	或源电流		+/-5	mA
I 10	MV预驱动1/0引脚上的灌电	流或源电流		+/-80	mA
	其它普通I/0引脚上的sink	灌电流或source源电流		+/-30	mA
	HSE的XI引脚			+/-4	mA
INJ (PIN)	其它引脚的注入电流			+/-4	mA
Σ I INJ (PIN)	所有10和控制引脚的总注)	电流		+/-20	mA

3.3 电气参数

3.3.1 工作条件

表3-2 通用工作条件

符号	参数	条件	最小值	最大值	单位
	内部HB时钟频率	$T_A = -40^{\circ}C \sim 105^{\circ}C$		72	MHz
FHCLK		$T_A = -40^{\circ}C \sim 125^{\circ}C$		68	MHz
$V_{\scriptscriptstyle HV}$	内部高压调压器和HV I/0引脚的电源	$T_A = -40^{\circ}C \sim 105^{\circ}C$	4. 0	29. 0	٧

	电压	$T_A = -40^{\circ}C \sim 125^{\circ}C$	4. 3	28. 0	٧
l v	内部低压调压器和MV I/0引脚的电源	$T_A = -40^{\circ}C \sim 105^{\circ}C$	4. 0	10. 5	٧
V_{DD8}	电压	$T_A = -40^{\circ}C \sim 125^{\circ}C$	4. 3	10. 0	٧
V_{DD33}	普通1/0引脚和模拟部分的电源电压		3. 1	3. 5	٧
Vs	高侧悬浮地电压	$T_A = -40^{\circ}C \sim 105^{\circ}C$	-2. 0	29. 0	٧
Vs	· 高侧态序地电压	$T_A = -40^{\circ}C \sim 125^{\circ}C$	-2. 0	28. 0	٧

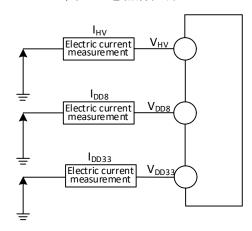
表3-3 上电和掉电条件

符号	参数	条件	最小值	最大值	单位
	V _{HV} 上升速率		0. 1	∞	ue/V
Тини	V _н √下降速率		40	∞	us/V

3.3.2 内置复位和电源模块特性

表3-4 复位和调压器及电压监测

符号	参数	条件	最小值	典型值	最大值	单位
		V _{DD33} 上升沿阈值	2. 8	2. 9	3. 0	٧
$V_{POR/PDR}$	上电/掉电复位阈值	V _{DD33} 下降沿阈值	2. 7	2. 8	2. 9	V
	上电/掉电复位阈值 PDR迟滞 OVP过压复位阈值电压 高压调压器的输出电压 高压调压器的负载电流 (含MV I/O和低压调压 低压调压器的输出电压 低压调压器的负载电流 (含普通I/O和内核调压 OTP过温保护的温度点	V _{DD8} 阈值	3. 05	3. 15	3. 25	٧
V _{PDRhyst}	PDR迟滞	V _{DD33} 阈值		100	150	mV
V _{0VP_REF} (3)	OVD社区有价强估由区	上升沿		1. 5		٧
V OVP_REF	UVP过压发证网值电压	下降沿		1. 45		٧
		VDD8_SEL[1:0] = 00且	4. 9	5. 0	5. 1	V
V _{DD8}	高压调压器的输出电压	V _{HV} ≥ 5.8V	4. 7	3. 0	3. 1	V
V DD8		VDD8_SEL[1:0] = 01 <u>且</u>	7. 8	8. 0	8. 2	V
		V _{HV} ≥ 8.8V	7.0	0.0	0. 2	•
l _{VDD8}	高压调压器的负载电流				35	mA
1 4008	(含MV I/O和低压调压器	器等所有负载)			33	ША
V_{DD33}	低压调压器的输出电压		3. 24	3. 3	3. 36	٧
l _{VDD33}	低压调压器的负载电流				20	mA
■ VDD33	(含普通1/0和内核调压	器等所有负载)			20	ША
TOTP	0TP过温保护的温度点	升温过程	130	145	160	°C
1016	解除过温保护的温度点	降温过程	105	120	135	°C
+	上电复位延时			3 (2)		ms
t _{RST}	其他复位延时			300		us


注: 1. 常温测试值。

- 2. 用户配置位RST_MODE可以增加上电复位延时。
- 3. Vove_REF需要结合片外电阻分压的比例,来决定V_{HV}电压的过压保护点。例如:上电阻200K和下电阻 15K将得到约21. 5V的过压复位电压。

3.3.3 供电电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/0引脚的负载、软件配置、工作频率、I/0脚的翻转速率、程序在存储器中的位置以及执行的代码等。电流消耗测量方法如下图:

图3-2 电流消耗测量

微控制器处于下列条件:

常温 V_{HV} = 12V (V_{DDS} = 8V 、 V_{DDSS} = 3.3V) 情况下,测试时:支持上拉输入的I/O口配置成上拉输入模式,其他配置为模拟输入模式。HSE = 8M 、HSI = 8M (已校准)。使能或关闭所有外设时钟的功耗。

表3-5 运行模式下典型的电流消耗,数据处理代码从内部闪存中运行

符号	全 米b	夕 //		典型	밀 值	出心
付写	参数	余件	条件 		关闭所有外设	单位
		运行工产油力 如	$F_{HCLK} = 72MHz$	12. 0	6. 3	
		运行于高速内部 RC振荡器(HSI),	$F_{HCLK} = 48MHz$	9. 0	4. 9	
	使用HB预分频以	$F_{HCLK} = 24MHz$	5. 9	3. 5	mA	
		· 减低频率	$F_{HCLK} = 8MHz$	1. 9	1. 4	
l _{HV}	运行模式下的供	/ / / /	$F_{HCLK} = 4MHz$	1. 4	1. 1	
I HV	应电流		$F_{HCLK} = 72MHz$	12. 2	6. 5	
		运行于高速外部 时钟(HSE),使用	$F_{HCLK} = 48MHz$	9. 2	5. 1	
		HB 预分频以减低	$F_{HCLK} = 24MHz$	6. 1	3. 7	mA
			$F_{HCLK} = 8MHz$	2. 1	1. 6	
		- グパー	$F_{HCLK} = 4MHz$	1. 6	1. 3	

注: 以上为实测参数。

表3-6 睡眠模式下典型的电流消耗,数据处理代码从内部闪存中运行

符号	参数	夕 //		典型	^민 值	
付写	多数	余件	条件		关闭所有外设	单位
		运行于高速内部 RC振荡器(HSI),	$F_{HCLK} = 72MHz$	9. 5	3. 9	
			$F_{HCLK} = 48MHz$	7. 1	3. 1	
			$F_{HCLK} = 24MHz$	4. 7	2. 3	mA
		減低频率	$F_{HCLK} = 8MHz$	1. 1	0. 6	
I _{HV}	(此时外设供电	7% 1kC9%—	F _{HCLK} = 4MHz	0. 7	0. 5	
	和时钟保持)	运行于高速外部	F _{HCLK} = 72MHz	9. 9	4. 2	
	时钟(HSE	时钟 (HSE), 使用	$F_{HCLK} = 48MHz$	7. 5	3. 4	A
		HB 预分频以减低	$F_{HCLK} = 24MHz$	5. 0	2. 6	mA
		频率	$F_{HCLK} = 8MHz$	1. 4	0. 9	

	L	1 ()	0.8	
	FHCLK - 4WITZ	1. 0	0.0	

注: 以上为实测参数。

表3-7 待机模式下典型的电流消耗

符号	参数	条件	典型值	单位	
		$V_{HV} = 12V \cdot V_{DD8} = 5V$		104	
	ST0P停止模式下的供应电流	$V_{HV} = 12V \cdot V_{DD8} = 8V$		114	uA
		$V_{HV} = 12V$, $V_{DD8} = 9V$		123	
		$V_{HV} = 12V$, $V_{DD8} = 10$	V	133	
		V - 42V V - 5V	LSI打开	76	
I _{HV}		$V_{HV} = 12V$, $V_{DD8} = 5V$	LSI关闭	76 74 94	
		V - 12V V - 9V	LSI打开	94	
	STANDBY待机模式下的供应电流	$V_{HV} = 12V, V_{DD8} = 8V$	LSI关闭	92	uA
	OTHER NAME OF STREET	$V_{HV} = 12V$, $V_{DD8} = 9V$	LSI打开	102	un
		VHV — 12V, VDD8 — 9V	LSI关闭	102	
		$V_{HV} = 12V, V_{DD8} = 10V$	LSI打开	114	
		VHV — IZV VDD8 — IOV	LSI关闭	114	

注: 以上为实测参数。

3.3.4 外部时钟源特性

表3-8 来自外部高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
F _{HSE_ext}	外部时钟频率		4	8	25	MHz
V _{HSEH} ⁽¹⁾	XI输入引脚高电平电压		0. 8*V _{DD33}		V _{DD33}	٧
V _{HSEL} ⁽¹⁾	XI输入引脚低电平电压		0		0. 2*V _{DD33}	٧
C _{in (HSE)}	XI输入电容			5		pF
DuCy _(HSE)	占空比(Duty cycle)		40	50	60	%
I١	XI输入漏电流				±1	uA

注: 1. 不满足此条件可能会引起电平识别错误。

图3-3 外部提供高频时钟源电路

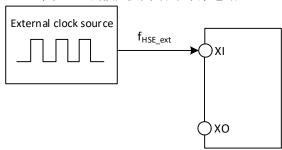
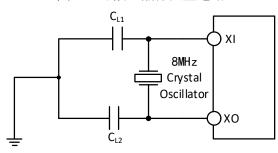


表3-9 使用一个晶体/陶瓷谐振器产生的高速外部时钟

符号 参数 条件 最小值 典型值 最大值		参数		最小值	典型值	最大值	单位
----------------------	--	----	--	-----	-----	-----	----


F _{x1}	谐振器频率		4	8	25	MHz
$R_{\scriptscriptstyle F}$	反馈电阻 (无需外置)			250		kΩ
C _{LOAD}	建议的负载电容与对应晶体 串行阻抗R。	$R_s = 60 \Omega^{(1)}$		20		pF
l ₂	HSE驱动电流	V _{DD33} = 3.3V, 20p负载		0. 3		mA
g _m	振荡器的跨导	启动		16		mA/V
t _{SU (HSE)}	启动时间	V∞是稳定		2 (2)		ms

- 注: 1.25M晶体ESR建议不超过80欧, 低于25M可适当放宽。
 - 2. 启动时间指从HSEON开启到HSERDY被置位的时间差。

电路参考设计及要求:

晶体的负载电容以晶体厂商建议为准,通常情况CL1 = CL2。

图3-4 外接8M晶体典型电路

3.3.5 内部时钟源特性

表3-10 内部高速(HSI)RC振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{HS1}	频率(校准后)			8		MHz
DuCy _{HS1}	占空比		45	50	55	%
		$T_A = 0^{\circ}C \sim 70^{\circ}C$	-1.5		1. 5	%
ACC _{HS1}	HSI振荡器的精度(校准后)	$T_A = -40^{\circ}C \sim 85^{\circ}C$	-2. 0		2. 0	%
		$T_A = -40^{\circ}C \sim 125^{\circ}C$	-2. 2		2. 2	%
t _{su(HSI)}	HSI振荡器启动稳定时间			10		us
DD (HSI)	HSI振荡器功耗		120	180	270	uA

表3-11 内部低速(LSI)RC振荡器特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{LS1}	频率		240	340	450	kHz
DuTy _{LS1}	占空比		45	50	55	%
t _{SU(LSI)}	LSI振荡器启动稳定时间			80		us
I DD (LSI)	LSI振荡器功耗			2		uA

3.3.6 从低功耗模式唤醒的时间

表3-12 低功耗模式唤醒的时间(1)

符号	参数	条件	典型值	单位
twusleep	从睡眠模式唤醒	使用HSI RC时钟唤醒	24	us
t _{WUSTOP}	从停止模式唤醒	使用HSI RC时钟唤醒	255	us

twustdby	从待机模式唤醒	LDO稳定时间 + HSI RC时钟唤醒	260	us

注: 以上为实测参数。

3.3.7 存储器特性

表3-13 闪存存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
t _{prog_page}	页(128字节)编程时间		3. 9	4. 5	5. 1	ms
t _{erase_page}	页(128字节)擦除时间		3. 9	4. 5	5. 1	ms
t _{ME}	整片擦除时间		3. 9	4. 5	5. 1	ms

表3-14 闪存存储器寿命和数据保存期限

符号	参数	条件	最小值	典型值	最大值	单位
N _{END}	物写为数	$T_A = 25^{\circ}C$	10K	50K ⁽¹⁾		次
	擦写次数	$T_A = 125^{\circ}C$	1K	5K ⁽¹⁾		次
t _{RET}	数据保存期限		10			年

注: 1. 实测操作擦写次数, 非担保。

3.3.8 普通1/0引脚特性

表3-15 普通1/0引脚静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD33}	供电电压		3. 1	3. 3	3. 5	٧
V _{IH}	1/0引脚输入高电平电压	$V_{DD33} = 3.3V$	1.8		V_{DD33}	٧
VIL	1/0引脚输入低电平电压	$V_{DD33} = 3.3V$	0		0.8	٧
V_{hys}	施密特触发器迟滞电压	$V_{DD33} = 3.3V$		300		mV
l _{Ikg}	1/0引脚输入漏电流			0	+/-3	uA
R _{PU}	上拉等效电阻		30	45	60	kΩ
C 10	I/0引脚电容			5		рF

表3-16 普通1/0引脚输出驱动电流特性

符号	参数	条件	最小值	典型值	最大值	单位
Isink	引脚输出低电平的灌电流	V _{DD33} = 3.3V, 引脚电压=0.4V	14	20	27	mA
I SOURCE	引脚输出高电平的源电流	V _{DD33} = 3.3V, 引脚电压=V _{DD33} -0.4V	13	18	24	mA

表3-17 普通1/0引脚输出电压特性

符号	参数	条件	最小值	最大值	单位
V_{oL}	输出低电平,单个引脚吸收8mA电流	V _{DD33} ≥ 3V		0. 5	V
V _{oh}	输出高电平,单个引脚输出8mA电流	V _{DD33} ≥ 3V	V _{DD33} -0. 5		V

注: 1. 当V_{HV} < 5V且PAO~PA3输出高电平时, 电压达不到V_{DD3}满幅, 约为V_{DD3}-1. 7V。

2. 以上条件中如果多个I/0引脚同时驱动,电流总和不能超过表3. 2节给出的绝对最大额定值。另外多个I/0引脚同时驱动时,电源/地线引脚上的电流较大,会产生压降使内部I/0的电压达不到表中电源电压,从而导致驱动电流小于标称值。

表3-18 普通1/0引脚输入输出交流特性

符号	参数	条件	最小值	最大值	单位
F _{max(10)out}	1/0引脚输出最高频率	$CL = 50pF, V_{DD33} \geqslant 3V$		30	MHz
t _{f(I0)out}	输出高至低电平的下降时间	01 - 50-5 V > 2V		12	ns
t _{r(I0)out}	输出低至高电平的上升时间	$CL = 50 pF, V_{DD33} \geqslant 3V$		12	ns
t _{EXTIpw}	EXTI控制器检测到外部信号的脉冲宽度		12		ns

3.3.9 MV I/O引脚特性

表3-19 MV I/0引脚静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD8}	供电电压		4. 0	8. 0	10. 5	٧
V _{IH}	1/0引脚输入高电平电压		2. 0		V _{DD8}	٧
V _{IL}	1/0引脚输入低电平电压		0		0. 7	٧
V _{hys}	施密特触发器迟滞电压			500		mV
1 ,	│ │/0引脚输入漏电流	引脚电压 = GND	-5	0	5	uA
lkg	1/051脚棚八쪠电流	引脚电压 = 5V	30	42	63	uA
R _{PD}	下拉等效电阻		80	120	170	kΩ
Cıo	I/0引脚电容			10		pF

表3-20 MV I/0引脚输出驱动电流特性

符号	参数	条件	最小值	典型值	最大值	单位
	引脚输出低电平的灌电流	V _{DD8} = 8V, 引脚电压= 0.5V	75	110	145	mA
	引脚输出低电平的短路电流	V _{DD8} = 8V, 引脚电压= V _{DD8}		620		mA
LSINK	引脚输出低电平的灌电流	V _{DD8} = 5V, 引脚电压= 0.5V	60	90	120	mA
	引脚输出低电平的短路电流	V _{DD8} = 5V, 引脚电压= V _{DD8}		320		mA
	引脚输出低电平的灌电流	V _{DD8} = 10V, 引脚电压= 0.5V	80	120	160	mA
	引脚输出低电平的短路电流	V _{DD8} = 10V,引脚电压= V _{DD8}		740		mA
	引脚输出高电平的源电流	V _{DD8} = 8V,引脚电压= V _{DD8} -0.5V	30	50	65	mA
	引脚输出高电平的短路电流	V _{DD8} = 8V, 引脚电压= GND		350		mA
1, 1	引脚输出高电平的源电流	V _{DD8} = 5V,引脚电压= V _{DD8} -0.5V	25	38	55	mA
LSOURCE	引脚输出高电平的短路电流	V _{DD8} = 5V, 引脚电压= GND		170		mA
	引脚输出高电平的源电流	V _{DD8} = 10V,引脚电压= V _{DD8} -0.5V	35	55	75	mA
	引脚输出高电平的短路电流	V _{DD8} = 10V, 引脚电压= GND		480		mA

注: 1. 对于HO引脚,高电平对应V₈电压,低电平对应V₈电压,测试条件基于两者差值V_{8.8}电压,V_{8.8}电压 条件参考上述V₈₈₈的值。

2. 测试引脚电流、驱动器短路电流时,建议采用低占空比脉冲测试且考虑芯片及时散热。

表3-21 MV I/0引脚输出电压特性

符号	参数	条件	最小值	最大值	单位
V_{LOL}	输出低电平,单个引脚吸收50mA灌电流	5V ≤ V _{DD8} ≤ 10V		0. 5	V
V_{LOH}	输出高电平,单个引脚输出25mA源电流	5V ≤ V _{DD8} ≤ 10V	V _{DD8} -0.5		٧

注:以上条件中如果多个I/0引脚同时驱动,电流总和不能超过表3.2节给出的绝对最大额定值。另外 多个I/0引脚同时驱动时,电源/地线引脚上的电流较大,会产生压降使内部I/0的电压达不到表中电源 电压,从而导致驱动电流小于标称值。

表3-22 MV I/0引脚输入输出交流特性

符号	参数	条件	最小值	典型值	最大值	单位
F _{Lmax} (10) out	1/0引脚输出最高频率	CL = 2000 pF, $5V \leq V_{DD8} \leq 10V$			400	kHz
t _{Lf(I0)out}	输出高至低电平的下降时间	CL = 2000pF,		35	70	ns
t _{Lr (10) out}	输出低至高电平的上升时间	$5V \leqslant V_{DD8} \leqslant 10V$		50	100	ns
t _{LEXTIPW}	EXTI控制器检测到外部信号的脉 冲宽度		12			ns

3.3.10 HV I/O引脚特性

表3-23 HV I/0引脚静态特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{HV}	供电电压		4. 0		29. 0	٧
V _{HPC5}	PC5不输出时的引脚耐压			V _{HV}	V _{HV} +6	٧
V _{HPB7}	PB7不输出时的引脚耐压			V _{HV}	38	٧
V _{HIH}	1/0引脚输入高电平电压		2. 0		V _{HV}	٧
V _{HIL}	1/0引脚输入低电平电压		0		0. 7	٧
V_{Hhys}	施密特触发器迟滞电压			500		mV
HIkg	1/0引脚输入漏电流		-5	0	5	uA
Сніо	1/0引脚电容			8		pF

表3-24 HV I/0引脚输出驱动电流特性

符号	参数	条件	最小值	典型值	最大值	单位
	引脚输出低电平的灌电流	V _{HV} = 29V, 引脚电压= 0.5V	0.8	1. 2	1. 6	mA
1,	引脚输出低电平的短路电流	V _{HV} = 29V, 引脚电压= V _{HV}		5		mA
I HSINK	引脚输出低电平的灌电流	V _{HV} = 8V, 引脚电压= 0.5V	0.8	1. 2	1. 6	mA
	引脚输出低电平的短路电流	V _{HV} = 8V, 引脚电压= V _{HV}		5		mA
	引脚输出高电平的源电流	V _{HV} = 29V, 引脚电压= V _{HV} -0.5V	0. 5	0. 9	1. 3	mA
Ι.	引脚输出高电平的短路电流	V _{HV} = 29V, 引脚电压= 0		8		mA
HSOURCE	引脚输出高电平的源电流	V _{HV} = 8V,引脚电压= V _{HV} -0.5V	0. 5	0. 9	1. 3	mA
	引脚输出高电平的短路电流	V _{HV} = 8V, 引脚电压= 0		8		mA

注:测试引脚电流、驱动器短路电流时,建议采用低占空比脉冲测试且考虑芯片及时散热。

表3-25 HV I/0引脚输出电压特性

符号	参数	条件	最小值	最大值	单位
V_{HOL}	输出低电平,单个引脚吸收2mA电流	5V ≤ V _{HV} ≤ 12V		0. 5	٧
V_{HOH}	输出高电平,单个引脚输出0.2mA电流	$5V \leqslant V_{HV} \leqslant 12V$	V _{HV} -0. 5		٧

注:以上条件中如果多个I/0引脚同时驱动,电流总和不能超过表3.2节给出的绝对最大额定值。另外 多个I/0引脚同时驱动时,电源/地线引脚上的电流较大,会产生压降使内部I/0的电压达不到表中电源 电压,从而导致驱动电流小于标称值。

表3-26 HV I/0引脚输入输出交流特性

符号 参数	条件	最小值	最大值	单位
----------	----	-----	-----	----

F _{Hmax} (10) out	1/0引脚输出最高频率	CL = 20pF, $4V \leqslant V_{HV} \leqslant 29V$		100	kHz
t _{Hf(I0)out}	输出高至低电平的下降时间	CL = 20pF,		100	ns
t _{Hr (10) out}	输出低至高电平的上升时间	$4V \leqslant V_{HV} \leqslant 29V$		100	ns
t _{HEXTIPW}	EXTI控制器检测到外部信号的脉冲宽度		12		ns

3.3.11 USB/BC接口UDP和UDM特性

表3-27 USB/BC接口I/0引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{DD33}	USB工作电压		3. 1	3. 3	3. 5	٧
V _{SE}	单端接收器阈值	额定电压	1. 2		1. 9	٧
R _{PU}	BC引脚上拉等效电阻	DAC = 100000	20	31	45	kΩ
R_{PD}	BC引脚下拉等效电阻	DAC = 100000	20	31	45	kΩ
l _{PU2}	BC引脚弱上拉电流	PCS = 10, BC输出电压为0.6V	7	10	15	uA
l _{PD3}	BC引脚弱下拉电流	PCS = 11, BC输出电压为0.6V	1	2	5	uA
l _{PD1}	BC引脚下拉电流	PCS = 01, BC输出电压为0.6V	55	80	120	uA
ET	DAC总偏差	$V_{DD33} = 3.3V$		0. 3	1	LSB
$V_{ extsf{DACmax}}$	DAC最高输出电压	V _{DD33} = 3.3V, 无阻性负载	3. 2	3. 25		٧
$V_{\mathtt{DACmin}}$	DAC最低输出电压	V _{DD33} = 3.3V, 无阻性负载		0	0. 02	٧
		V _{DD33} = 3.3V, 关闭DAC缓冲器	12	15. 5	20	kΩ
R _{DAC}	DAC输出阻抗	V _{DD33} = 3.3V, 开启DAC缓冲器, 0.1V≪V _{DACB_OUT} ⁽¹⁾ ≪V _{DD33} -0.1V		17	25	Ω
I DDDAC	DAC缓冲器供电电流			135		uA
VDACBmax	带缓冲器DAC最高输出电压	V _{DD33} = 3.3V, 负载10kΩ下拉	3. 1	3. 2		٧
[_v	带缓冲器DAC最低输出电压	V _{DD33} = 3.3V, 负载10kΩ下拉		0. 005	0. 02	٧
V _{DACBmin}	市场/中的DNU取似制山巴压	V _{DD33} = 3.3V, 负载10kΩ上拉		0. 08	0. 15	٧
tBuf	DAC缓冲器作为比较器用的输	ì出延时		400	800	ns

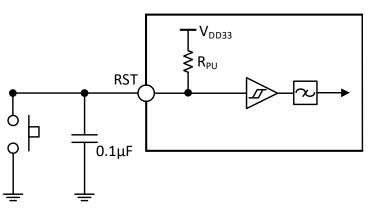
注: VDACB_OUT 为带缓冲器DAC的输出电压。

3.3.12 USB PD接口特性

表3-28-1 PD接口I/0引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
tRise	上升时间	幅度10%到90%之间的时间,无负载	300	430	600	ns
tFall	下降时间	幅度10%到90%之间的时间,无负载	300	430	600	ns
vSwing	输出电压摆幅(峰一峰值)	1. 00	1. 12	1. 20	٧
_D	输出阻抗	V _{DD33} = 3.3V, PD接口输出1.12V	26		90	Ω
zDriver	湘山性九	V _{DD33} = 3.3V, PD接口输出3.3V		40		Ω

表3-28-2 Type-C接口I/O引脚特性(USBPDx_CC_HVT = 0时电压值参考普通I/O引脚)


符号	参数	条件	最小值	典型值	最大值	单位
V _{CCIH}	CC引脚输入高电平电压	V _{DD33} = 3.3V, USBPDx_CC_HVT = 1 (x=0, 1)	2. 1		V _{DD33}	٧
Vccil	CC引脚输入低电平电压	V _{DD33} = 3.3V, USBPDx_CC_HVT = 1 (x=0, 1)	0		1. 9	٧

$V_{\tt CChys}$	施密特触发器迟滞电压	$V_{DD33} = 3.3V,$ $USBPDx_CC_HVT = 1 (x=0, 1)$		200		mV
	I _{Pucc} CC引脚上拉电流	$CCx_PU = 11 (x=1, 2),$ PAD $< V_{DD33}$ -0. 6V	68	80	92	uA
I _{PUCC}		$CCx_PU = 10 (x=1, 2),$ PAD < V_{DD33} -0. 6V	150	180	210	uA
		$CCx_PU = 01 (x=1, 2),$ PAD < V_{DD33} -0. 6V	280	330	380	uA
Rd	CC引脚内置的Rd下拉电阻 (适用于带R后缀的CCxR)	CCx_PD = 1 (x=1, 2), V _{DD33} ≥ 3. 1V或外部上拉330uA	4. 08	5. 1	6. 12	kΩ
R_{wpd}	CC引脚内置的弱下拉电阻	$CCx_PD = 0 (x=1, 2)$	250	600		kΩ
VAINCC	CC引脚ADC转换电压范围	$V_{HV} > 5V$ $V_{HV} < 5V$	0		V _{DD33} V _{DD33} -1. 7	V

3.3.13 RST引脚特性

电路参考设计及要求:

图3-3 外部复位引脚典型电路

注:图中的电容是可选的,可以用于滤除按键抖动。

表3-29 外部复位引脚特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{IL (RST)}	RST输入低电平电压	$V_{DD33} = 3.3V$	0		0.8	٧
V _{IH(RST)}	RST输入高电平电压	$V_{DD33} = 3.3V$	1.8		V_{DD33}	٧
$V_{hys(RST)}$	RST施密特触发器迟滞电压		200			mV
R_{PU}	上拉等效电阻		30	45	60	kΩ
$V_{F(RST)}$	RST输入可被滤波脉宽				60	ns
$V_{NF(RST)}$	RST输入无法滤波脉宽		230			ns

3.3.14 TIM定时器特性

表3-30 TIMx特性

符号	参数	条件	最小值	最大值	单位
t _{res(TIM)} 定时器基准时钟		1		t _{TIM×CLK}	
t _{res(TIM)}		f _{TIMxCLK} = 48MHz	20. 8		ns
F _{EXT}	CH1至CH3的定时器外部时钟频率		0	f _{TIMxCLK} /2	MHz

		f _{TIMxCLK} = 48MHz	0	24	MHz
R _{esTIM}	定时器分辨率			16	位
	当选择了内部时钟时,16位计数器时		1	65536	t _{TIM×CLK}
tcounter	钟周期	f _{TIMxCLK} = 48MHz	0. 0208	1363	us
1				65535	t _{TIM×CLK}
TMAX_COUNT	│最大可能的计数 │	f _{TIMxCLK} = 48MHz		1363	t _{TIM×CLK}

3.3.15 I2C接口特性

图3-4 12C总线时序图

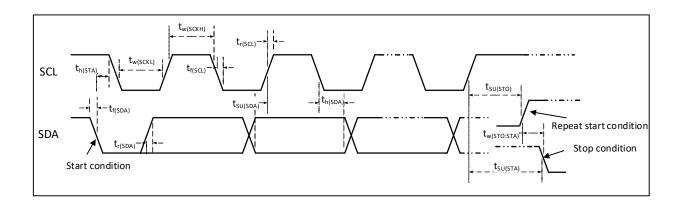


表3-31 120接口特性

<i>ሎ</i> 🗆	↔ ₩-	标准	12C	快速	12C	单位 us us ns
符号	· 参数 · · · · · · · · · · · · · · · · · · ·	最小值	最大值	最小值	最大值	平14
t _{w(SCKL)}	SCL时钟低电平时间	4. 7		1. 2		us
t _{w(SCKH)}	SCL时钟高电平时间	4. 0		0.6		us
t _{SU(SDA)}	SDA数据建立时间	250		100		ns
t _{h (SDA)}	SDA数据保持时间	0		0	900	ns
$t_{r(SDA)}/t_{r(SCL)}$	SDA和SCL上升时间		1000	20		ns
$t_{f(SDA)}/t_{f(SCL)}$	SDA和SCL下降时间		300			ns
t _{h (STA)}	开始条件保持时间	4. 0		0.6		us
t _{SU(STA)}	重复的开始条件建立时间	4. 7		0.6		us
t _{su(sto)}	停止条件建立时间	4. 0		0.6		us
t _{w(STO:STA)}	停止条件至开始条件的时间(总线空闲)	4. 7		1. 2		us
Сь	每条总线的容性负载		400		400	pF

3.3.16 SPI接口特性

图3-7 SPI主模式时序图

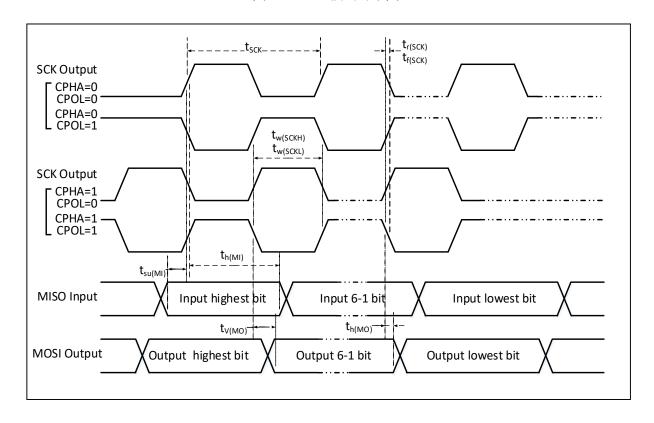
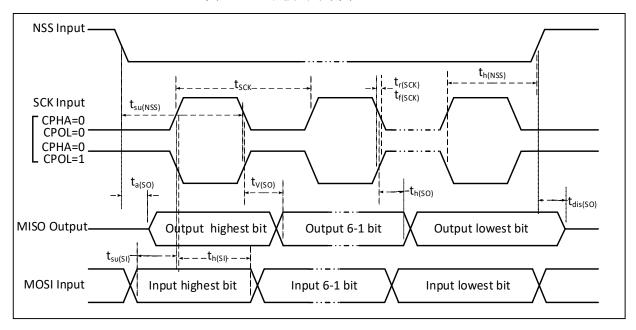
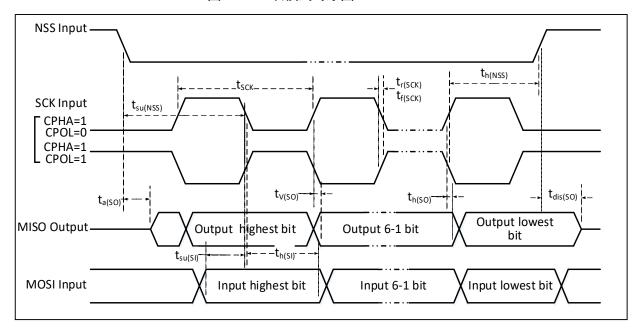




图3-8 SPI从模式时序图(CPHA=0)

图3-9 SPI从模式时序图(CPHA=1)

表3-32 SPI接口特性

符号	参数		条件	最小值	最大值	单位		
£ /±	CD 1 B十七十年五本	主模式			36	单位 MHz MHz ns ns ns ns		
f _{sck} /t _{sck}	SPI时钟频率	从模式		从模式			36	MHz
$t_{r(SCK)}/t_{f(SCK)}$	SPI时钟上升和下降时间	负载电额	字: C = 30pF		8	ns		
t _{su (NSS)}	NSS建立时间	从模式		2*t _{HCLK}		ns		
t _{h (NSS)}	NSS保持时间	从模式		2*t _{HCLK}		ns		
	covanuanda	主模式,f _{HCLK} = 24MHz,预 分频系数=4		70	97			
$t_{w(SCKH)}/t_{w(SCKL)}$	SCK高电平和低电平时间			70	97	ris		
_		主模式	HSRXEN = 0	12		ns		
t _{su(MI)}	数据输入建立时间	土铁八	HSRXEN = 1	12-0.5*t _{sck}				
t _{su(si)}		从模式		4		ns		
_		→ 措 士	HSRXEN = 0	-4		ns		
t _{h(MI)}	数据输入保持时间	主模式	HSRXEN = 1	0.5*t _{sck} -4				
t _{h(SI)}		从模式		4		ns		
t _{a (S0)}	数据输出访问时间	从模式,	$f_{HCLK} = 20MHz$	0	1*t _{HCLK}	ns		
t _{dis(SO)}	数据输出禁止时间	从模式		0	10	ns		
t _{V (SO)}	粉块烧虫方沙叶间	从模式	(使能边沿之后)		15	ns		
t _{v (MO)}	数据输出有效时间	主模式	(使能边沿之后)		5	ns		
t _{h (S0)}	** 据绘山/兄共叶词	从模式	(使能边沿之后)	8		ns		
t _{h (M0)}	数据输出保持时间	主模式	(使能边沿之后)	0		ns		

3.3.17 模拟/数字转换器ADC特性

表3-33 12位ADC特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ extsf{DD33}}$	供电电压		3. 1	3. 3	3. 5	٧
I _{DDADC}	供电电流			1		mA
f _{ADC}	ADC时钟频率				18	MHz
Vain	转换电压范围		0		V _{DD33}	٧
\mathbf{C}_{ADC}	内部采样和保持电容			6		pF
fs	采样速率	$f_{ADC} = 18MHz$	250		1000	kHz
l s	木件坯 竿 		1/72		1/18	$f_{\mathtt{ADC}}$
+	采样时间	$f_{ADC} = 18MHz$	0. 31		3. 31	us
t _s	本作り回		5. 5		59. 5	1/f _{ADC}
t _{STAB}	上电时间			7		us
_	总的转换时间	$f_{ADC} = 18MHz$	1		4	us
t _{conv}	(包括采样时间)		18		72	1/f _{ADC}

注: 以上均为设计参数保证。

公式:最大RAIN

$$R_{AIN} < \frac{T_S}{f_{ADC} \times C_{ADC} \times \ln 2^{N+2}} - R_{ADC}$$

上述公式用于决定最大的外部阻抗, 使得误差可以小于1/4 LSB。其中N = 12(表示12位分辨率)。

表3-34 f_{ADC} = 18MHz时的最大R_{AIN}

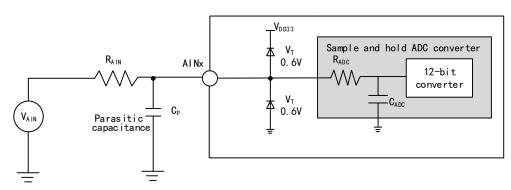

T _s (周期)	ts(us)	最大R _{AIN} (kΩ)
5. 5	0. 31	3. 8
11.5	0. 64	9. 4
23. 5	1. 31	21
59. 5	3. 31	55

表3-35 ADC误差

符号	参数	条件	最小值	典型值	最大值	单位
ET	数据总偏差			±3	±8	
E0	失调误差	$f_{ADC} = 18MHz,$		±1	±3	
EG	增益误差	$R_{AIN} < 4k \Omega$,		±2	±4	LSB
ED	微分非线性误差	$V_{DD33} = 3.3V$		±3	±7	
EL	积分非线性误差			±3	±7	

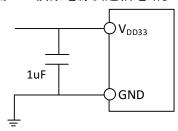

注: 以上均为设计参数保证。

图3-5 ADC典型连接图

C。表示PCB与焊盘上的寄生电容(大约5pF),可能与焊盘和PCB布局质量有关。较大的C。数值将降低转换精度,解决办法是降低fac值。

图3-6 模拟电源及退耦电路参考

3.3.18 运算放大器OPA特性

表3-36-1 OPA1特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD33}	供电电压		3. 1	3. 3	3. 5	٧
I DDQII	供电电流			270		uA
V _{CMIR}	共模输入电压				V _{DD33} -1.5	٧
VIOFFSET	输入失调电压			2	6	mV
Av ⁽¹⁾	开环增益			90		dB
		V0∈ (0. 3V, V _{DD33} -0. 3V)		600		
BW ⁽¹⁾	0PA1运算放大器带宽	V0∈ (0. 2V, V _{DD33} -0. 2V)		500		kHz
		V0∈ (0. 1V, V _{DD33} -0. 1V)		400		
PGA _{GAIN} (1)	PGA增益误差	Gain = 20	-1		1	%
FUAGAIN	PGA增益误差	Gain = 40	-1		1	70
R _{BIAS}	在QIII模式下的偏置电阻			90		kΩ

注: 1. 设计参数保证。

表3-36-2 OPA2特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD33}	供电电压		3. 1	3. 3	3. 5	٧
I DDQII	供电电流			270		uA
V _{CMIR}	共模输入电压				V _{DD33} -1.5	٧
V _{IOFFSET}	输入失调电压			2	6	mV
Av ⁽¹⁾	开环增益			90		dB

		V0 ∈ (0. 3V, V _{DD33} -0. 3V)		600		
BW ⁽¹⁾	0PA2运算放大器带宽	V0∈ (0. 2V, V _{DD33} -0. 2V)		500		kHz
	PGA增益误差	V0∈ (0. 1V, V _{DD33} -0. 1V)		400		
		Gain = 5	-1		1	
PGA _{GAIN} (1)		Gain = 10	-1		1	<u></u> %
PGAGAIN		Gain = 20	-1		1	70
		Gain = 40	-1		1	
R _{BIAS}	在QII2模式下的偏置电阻			90		kΩ

注: 1. 设计参数保证。

表3-36-3 OPA3和OPA4特性

符号	参数	条件	最小值	典型值	最大值	单位
$V_{ extsf{DD}33}$	供电电压		3. 1	3. 3	3. 5	٧
IDDISP	供电电流			420		uA
V _{CMIR}	共模输入电压				V _{DD33} -1.5	٧
VIOFFSET	输入失调电压			3	8	mV
Av ⁽¹⁾	开环增益			110		dB
G _{BW} ⁽¹⁾	单位增益带宽			20		MHz
$P_{M}^{(1)}$	相位裕度			75		٥
		Gain = 4	-1.3		1. 3	
	内部同相PGA增益误差	Gain = 8	-1.3		1.3	%
	Maning和FGA增量块左	Gain = 16	-1.3		1.3	70
		Gain = 55	-1.6		1.6	
	差分输入PGA增益误差	Gain = 4	-1.3		1.3	%
PGA _{GAIN} (1)		Gain = 8	-1.3		1.3	
FUAGAIN	(差分输入端串接100Ω电阻)	Gain = 16	-1.3		1.3	/0
		Gain = 55	-1.6		1.6	
		Gain = 4	-0.3		2. 3	
	差分输入PGA增益误差	Gain = 8	-0.3		2. 3	%
	(差分输入端直连低阻信号源)	Gain = 16	-0.3		2. 3	/0
		Gain = 55	-0.6		2. 6	
S _R ⁽¹⁾	摆率		10	20	30	V/us
Vohsat (1)	高饱和电压	无负载	V _{DD33} -300			mV
V _{OLSAT} (1)	低饱和电压	无负载			300	mV
twakeup (1)	关闭到唤醒时间,0.1%				1	us
eN ⁽¹⁾	 输出噪声密度	1kHz		200		nV/
EN	刑山味丹丘反	10kHz		80		sqrt(Hz)

注: 1. 设计参数保证。

3.3.19 CMP特性

表3-37-1 CMP1特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD33}	供电电压		3. 1	3. 3	3. 5	V
V _{CMIR}	共模输入电压			1. 2	V _{DD33} -1.5	V

V _{IOFFSET} (1)	输入失调电压		3. 5	mV
I DDOPAMP	消耗电流		35	uA
V	迟滞电压	QII1_HYPSEL = 0	100	mV
V_{hys}		QII1_HYPSEL = 1	200	mV
	比较器延时,			
t _D ⁽¹⁾	V _{INP} 从(V _{INN} -10mV)到	$V_{INN} = 1.2V$	40	ns
	(V _{INN} +10mV)变化			

注: 1. 设计参数保证。

表3-37-2 CMP2特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD33}	供电电压		3. 1	3. 3	3. 5	٧
V _{CMIR}	共模输入电压		0		V _{DD33}	٧
		共模输入, 0.6V < V _{CMIR} <v<sub>DD33-0.6V</v<sub>		2	6	
V _{IOFFSET} (1)	输入失调电压	共模输入, V _{CMIR} < 0.6V或 V _{CMIR} > V _{DD33} -0.6V		3. 5	11	mV
DDOPAMP	消耗电流			55		uA
V _{hys}	迟滞电压	QII2_HYPSEL[2:0] = 000 QII2_HYPSEL[2:0] = 001 QII2_HYPSEL[2:0] = 010 QII2_HYPSEL[2:0] = 011 QII2_HYPSEL[2:0] = 100 QII2_HYPSEL[2:0] = 101 QII2_HYPSEL[2:0] = 110		0 5 10 20 40 50 60		mV
t _D ⁽¹⁾	比较器延时, V _{INP} 从(V _{INN} -100mV)到 (V _{INN} +100mV)变化	QII2_HYPSEL[2:0] = 111 V _{INN} = 1.2V		30		ns
DACINL	CMP2内部DAC积分非线 性误差, 0.1V≪DAC_OUT≪3.1V, step = 200mV	V _{DD33} = 3.3V			30	mV

注: 1. 设计参数保证。

表3-37-3 CMP3电压比较器特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD33}	供电电压		3. 1	3. 3	3. 5	٧
V _{CMIR}	共模输入电压		0		V _{DD33}	٧
V (1)	输入失调电压	共模输入, 0.6V < V _{CMIR} < V _{DD33} -0.6V		2	6	\ <i>\</i>
V _{IOFFSET} (1)		共模输入, V _{CMIR} < 0.6V或		3. 5	11	mV

		$V_{CMIR} > V_{DD33}-0.6V$			
DDOPAMP	消耗电流		50		uA
		HYS[1:0] = 00	0		mV
,,	迟滞电压	HYS[1:0] = 01	10		mV
V_{hys}		HYS[1:0] = 10	20		mV
		HYS[1:0] = 11	40		mV
	比较器延时,				
t _D ⁽¹⁾	V _{INP} 从(V _{INN} -100mV)到	$0 \leqslant V_{INN} \leqslant V_{DD33}$	17	50	ns
	(V _{INN} +100mV)变化				
	内部DAC积分非线性误				
DACINL	差,	$V_{DD33} = 3.3V$		50	mV
DACTNL	0.1V≪DAC_OUT≪3.1V,	V DD33 — 3. 3V		30	IIIV
	step = 200mV				

注: 1. 设计参数保证。

3.3.20 ISINK模块电流特性

表3-38 10位ISINK模块电流特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD33}	供电电压		3. 1	3. 3	3. 5	٧
I STEP (2)	单位电流值(1*LSB)			0. 244		uA
I _{sw}	电流输出范围	V _{PAD} > 0.6V	0		1023*LSB	uA
I 180 (1)	电流绝对值误差		−2*LSB		2*LSB	uA
I INL (1)	电流积分非线性误差	校准后			±4	LSB
I DNL (1)	电流微分非线性误差				±2	LSB
_{TC} (1)	ISINK电流温度特性	T _A = 0~55°C, 输入值0x200	-3		+2	LSB
I TC		T _A = -40~105℃, 输入值0x200	-6		+5	LSB
tsettling (1)	建立时间(全范围:输入代码从最小值转变为最大值,ISNK_OUT达到其终值的±1*LSB)			1	3	us
V _{UPDATE} (1)	当输入代码为较小变化时(从数值 i 到 i+1*LSB), 得 到 正 确 ISNK_OUT的最大频率。				1	MS/s
twakeup (1)	从关闭状态唤醒的时间			2	4	us

注: 1. 设计参数保证。

2. 如果控制外部DC-DC, 上电阻可取值82K, 电压调节步距为20mV。

3. 3. 21 ISOURCE模块电流特性

表3-39 ISOURCE模块电流特性

符号	参数	条件	最小值	典型值	最大值	单位
V_{DD33}	供电电压		3. 1	3. 3	3. 5	٧
l sw ⁽¹⁾	电流输出范围	ISRCx_SEL = 0 (x = 1, 2), $V_{PAD} < V_{DD33}$ -0.6V	6	8	10	uA

		ISRCx_SEL = 1 (x = 1, 2), $V_{PAD} < V_{DD33}-0.6V$	26	32	38	uA
I _{TC} (1)	ISOURCE电流温度特性	$T_A = -40 \sim 105^{\circ}C$	-2		+2	%

注: 1. 设计参数保证。

第4章 封装及订货信息

芯片封装

封装形式	塑体尺寸	引脚节距		封装说明	订货型号	
QFN48X7	7*7mm	0. 5mm	19.7mil	四边无引线48脚	CH32M030C8U3	
LQFP48	7*7mm	0. 5mm	19.7mil	标准LQFP48贴片	CH32M030C8T7	
QFN48	5*5mm	0. 35mm	13.8mil	四边无引线48脚	CH32M030C8U7	
QFN32	4*4mm	0. 4mm	15.7mil	四边无引线32脚	CH32M030K8U7	
QS0P28	3. 9*9. 9mm	0. 635mm	25. Omil	1/4尺寸28脚贴片	CH32M030G8R7	

说明:尺寸标注的单位是mm(毫米),引脚中心间距总是标称值,没有误差,除此之外的尺寸误差不大于±0.2mm或者±10%两者中的较大值。

图4-1 LQFP48封装

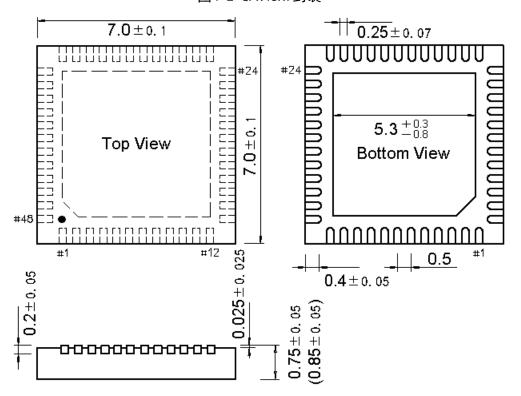
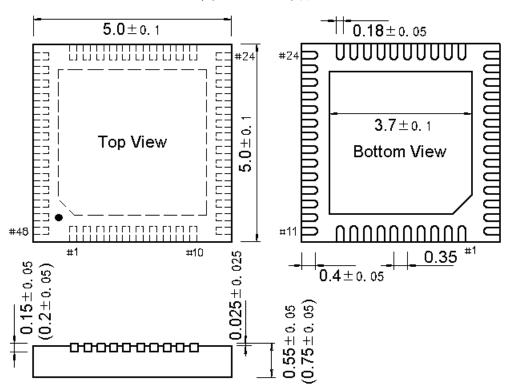
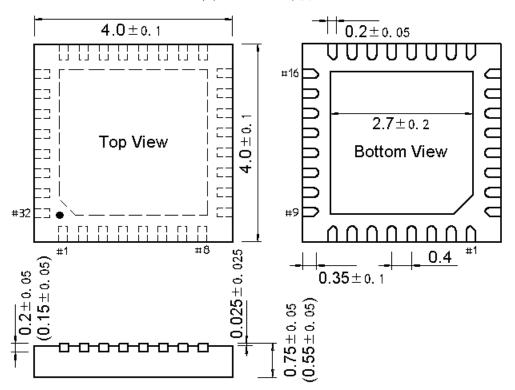
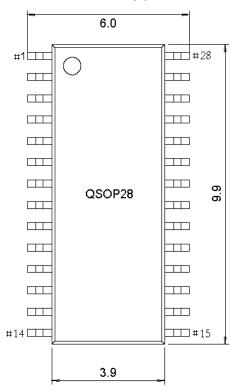
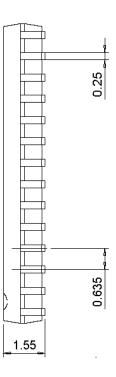



图4-2 QFN48X7封装

图4-3 QFN48封装

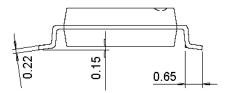

图4-4 QFN32封装

图4-5 QSOP28封装

系列产品命名规则

303

R

F = Arm内核, 通用MCU

V = 青稞RISC-V内核, 通用MCU

L = 青稞RISC-V内核, 低功耗MCU

X = 青稞RISC-V内核, 专用或特殊外设MCU

M = 青稞RISC-V内核,内置预驱的电机MCU

产品类型(*)+产品子系列(**)

产品类型	产品子系列		
0 = 青稞V2/V4内核,	02 = 16K闪存超值通用型		
超值版,主频<=48M	03 = 16K闪存基础通用型, OPA		
	05 = 32K闪存增强通用型, OPA、双串口		
	06 = 64K闪存多能通用型,OPA、双串口、TKey		
	07 = 基础电机应用型, OPA+CMP		
	35 = 连接型, USB、USB PD/Type-C		
	33 = 连接型, USB		
	30 = 电机应用型, OPA+CMP、USB、PD/Type-C		
1 = M3/青稞V3/V4内核,	03 = 连接型, USB		
基本版,主频<=96M	05 = 连接型, USB HS、SDIO、CAN		
2 = M3/青稞V4非浮点内核,	07 = 互联型, USB HS、CAN、以太网、SDIO、FSMC		
增强版, 主频<=144M	08 = 无线型, BLE5.x、CAN、USB、以太网		
3 = 青稞V4F浮点内核,	17 = 互联型, USB HS、CAN、以太网(内置PHY)、		
增强版,主频<=144M	SDIO, FSMC		

引脚数目

J = 8脚 D = 12脚 A = 16脚 F = 20脚 E = 24脚

G = 28脚 K = 32脚 T = 36脚 C = 48脚 R = 64脚

W = 68脚 V = 100脚 Z = 144脚

闪存存储容量

8 = 64K闪存存储器 B = 128K闪存存储器 C = 256K闪存存储器

封装

T = LQFP U = QFN R = QSOP P = TSSOP M = SOP

温度范围

 $6 = -40^{\circ}$ C~85°C(工业级) $7 = -40^{\circ}$ C~105°C(扩展工业级、汽车2级)

3 = -40°C~125°C (汽车1级) D = -40°C~150°C (汽车0级)